Способы преобразования чертежа графическая работа

Лекция 4. Способы преобразования ортогонального чертежа

4.1. Способ перемены плоскостей проекций

Чаще всего геометрические объекты расположены относительно плоскостей проекций в общем положении, и при решении задач для достижения поставленной цели необходимо выполнять много построений.

Количество построений можно значительно сократить, если геометрические элементы будут расположены в частном положении относительно плоскостей проекций.

Существуют два основных способа преобразования чертежа, при которых:

  1. Объект остаётся неподвижным, при этом меняется аппарат проецирования;
  2. Условия проецирования не меняются, но изменяется положение объекта в пространстве.

К первому способу относится способ перемены плоскостей проекций.

Ко второму – способ вращения (вращение вокруг линии уровня и вращение вокруг проецирующей прямой); способ плоскопараллельного перемещения.

Рассмотрим наиболее часто используемые способы при решении задач.

Способ перемены плоскостей проекций или способ введения дополнительных плоскостей проекций (ДПП) позволяет перейти от заданной системы плоскостей проекций к новой системе, более удобной для решения той или иной задачи.

Рассмотрим положение точки А относительно известной системы плоскостей проекций π2⊥π1 (Рисунок 4.1, а и б).

Введём π4⊥π1, при этом получим новую систему двух взаимно перпендикулярных плоскостей. Положение точки А на эпюре будет в этом случае задано проекциями А1 и А4.

Правила перемены плоскостей проекций:

  1. Новая плоскость проекций вводится перпендикулярно, по крайней мере, одной из заданных на чертеже плоскостей проекций;
  2. ДПП располагается относительно проецируемого объекта в частном положении, удобном для решения поставленной задачи;
  3. Новую плоскость совмещаем вращением вокруг новой оси проекций с плоскостью, которой она перпендикулярна на свободное место так, чтобы проекции не накладывались друг на друга.


а б

Рисунок 4.1 – Способ перемены плоскостей проекций

  1. На чертеже новая проекция геометрического элемента находится на линии связи, перпендикулярной новой оси проекций:
  1. Расстояние от А4 до π14 равно расстоянию от А2 до π21, так как величина этих отрезков (отмечены ○) определяет расстояние от точки А до плоскости проекций π1.

При решении задачи необходимо заранее обдумать, как расположить новую плоскость проекций относительно заданных геометрических объектов (прямой, плоскости и др.), и как на чертеже провести новую ось проекций, чтобы в новой системе плоскостей заданные объекты заняли бы частные положения по отношению к новой плоскости проекций.

Упражнение

1. Спроецировать отрезок общего положения АВ в точку.

  1. Введём ДПП π4//А1В1 и π4⊥π1 (Рисунок 4.2). В новой системе двух взаимно перпендикулярных плоскостей проекций π14 отрезок АВспроецируется на π4 в натуральную величину и по этой проекции можем определить угол наклона отрезка к плоскости проекций π1

Упражнение

2. Дана плоскость общего положения – σ, заданная треугольником АВС (Рисунок 4.3).

Определить истинную величину треугольника.

  1. Введём ДПП π4⊥σ и π4⊥π1, для чего построим горизонталь в плоскости треугольника и проведём новую ось проекций π14⊥g1согласно теореме о перпендикуляре к плоскости. На π4 плоскость σ спроецируется в прямую, что означает σ⊥πp4.
  2. Введём ДПП π5//σ (π45//А4В4С4) и π4⊥π5. На π5 проекция А5В5С5 – есть истинная величина треугольника.

4.2. Способ вращения

Сущность способа вращения состоит в том, что положение системы плоскостей проекций считается неизменным в пространстве, а положение проецируемого объекта относительно неподвижных плоскостей изменяется.

Из сравнения сущности обоих способов видно, что решение задач, которые требуют применения преобразования ортогонального чертежа, может быть выполнено любым из этих способов, результат при этом должен получиться одинаковым. Основа выбора того или иного способа – рациональность решения.

Вращение заданных элементов будем осуществлять вокруг проецирующей прямой, то есть прямой, перпендикулярной какой-либо плоскости проекций, при этом все точки заданных элементов поворачиваются в одну и ту же сторону на один и тот же угол (Рисунок 4.4, а и б). Ось вращения и объект вращения составляют твёрдое тело.

Читайте также:  Способ оптимизации прибыли за счет проведения различной ценовой политики

А – точка в пространстве;

О – центр вращения точки А;

АО – радиус вращения


а б

Рисунок 4.4 – Способ вращения вокруг прямой, перпендикулярной π2

Точка описывает в пространстве окружность радиусом АО. Плоскость окружности перпендикулярна оси вращения (σ⊥m).

Так как m⊥π2 , то σ//π2, следовательно, σ⊥π1, ⇒ σ1m1, и поэтому σ проецируется на π1 в виде прямой, перпендикулярной проекции оси вращения, а на π2 траектория вращающейся точки проецируется в виде окружности с центром О2m2.

Пусть ось вращения m⊥π1 (Рисунок 4.5, а и б). Плоскость окружности σ⊥m.


а б
Рисунок 4.5 – Вращение вокруг прямой, перпендикулярной π1
\left.\begin\sigma\parallel\pi_1\\\sigma\perp \pi_2\\\end\right\> npu\;m\perp\pi_1\Longrightarrow\sigma_2\perp m_2
Свойства проекций

  1. На плоскость проекций, перпендикулярную оси вращения, траектория вращающейся вокруг этой оси точки проецируется без искажения, то есть в окружность с центром, совпадающим с проекцией оси вращения на эту плоскость и радиусом, равным расстоянию от вращаемой точки до оси вращения.
  2. На плоскость проекций, параллельную оси вращения, траектория вращающейся точки проецируется в отрезок, перпендикулярный проекции оси вращения на эту плоскость.
  3. На плоскость проекций, перпендикулярную оси вращения, проекция вращаемого объекта своих размеров и формы не меняет.

Упражнение

Дано : отрезок общего положения – АВ.

Определить : способом вращения истинную величину отрезка и углы наклона его к плоскостям проекций.

1. Выберем ось вращения m⊥π1 и проходящую через точку В (Рисунок 4.6).

На плоскости проекций π2 проекция траектории перемещения точки А – прямая,

A_2 \overline\perp m_2\;u\;A_2\overline\parallel\pi_2/\pi_1

На плоскости проекций π1 проекция траектории перемещения точки А – окружность радиусом |А1В1|.

Повернем отрезок до положения, параллельного плоскости проекций π2. Получим натуральную величину отрезка.

Угол наклона отрезка АВ к плоскости проекций π1 будет угол
\alpha=\angle\widehat_2> .

Для того, чтобы определить угол наклона АВ к плоскости проекций π2, надо ввести новую ось вращения перпендикулярно π2 и повторить построения.

4.3. Определение истинной величины треугольника способом вращения

Пусть плоскость σ задана треугольником. Необходимо определить истинную величину треугольника (Рисунок 4.7).

Одним поворотом вокруг оси, перпендикулярной к плоскости проекций, истинную форму треугольника получить нельзя (так же как и введением одной ДПП).

Вращая вокруг оси m, перпендикулярной π1 можно расположить плоскость ΔАВС⊥π2 (а вращая вокруг оси n⊥π2 можно расположить плоскость ΔАВС⊥π1).


Рисунок 4.7

  1. Положим σ’ должна быть перпендикулярна π2. Для чего построим CD – горизонталь h плоскости σ. Введём первую ось вращения m⊥π1, например, через точку С.
  2. Повернём треугольник вокруг m до положения, когда
    \overline\perp\pi_2\Rightarrow\overline_1\overline_1\perp\pi_2/\pi_1
    На основании 3-го свойства, новая горизонтальная проекция треугольника \overline по величине должна равняться A1B1C1, а фронтальная проекция треугольника будет представлять отрезок.
  3. Введём вторую ось вращения n⊥π2 через точку \overline_2 . Повернём фронтальную проекцию \overline в новое положение \overline<\overline\overline\overline>\parallel\pi_2/\pi_1 . На π1 получим треугольник \overline<\overline\overline\overline> , равный истинной величине треугольника АВС.

4.4. Задачи для самостоятельной работы

Двумя способами преобразования ортогонального чертежа:

1. Определить расстояние от точки D до отрезка АВ – общего положения (Рисунок 4.8).


Рисунок 4.8

2. Определить расстояние между двумя параллельными прямыми общего положения (АВ//CD) (Рисунок 4.9).


Рисунок 4.9

3. Определить расстояние между двумя скрещивающимися прямыми, заданными отрезками АВ и CD (Рисунок 4.10).


Рисунок 4.10

4. Построить недостающую проекцию точки D при условии, что задана σ=ΔАВС – общего положения и первая проекция точки D1, Dотстоит от плоскости σ на 30 мм (Рисунок 4.11).


Рисунок 4.11

5. Дан отрезок АВ – общего положения. Ось вращения не проходит через АВ (Рисунок 4.12). Определить способом вращения истинную величину АВ.


Рисунок 4.12

6. Задана прямая общего положения m и точка А вне прямой. Построить плоскость, проходящую через точку А и перпендикулярную прямой m (Рисунок 4.13).


Рисунок 4.13

Источник

Способы преобразования чертежа

Способы преобразования чертежа служат для решения метрических задач по определению натуральной величины геометрических объектов (отрезка прямой или плоскости), либо кратчайшего расстояния между геометрическими объектами.

Суть этих способов заключается в том, что необходимо преобразовать комплексный чертеж так, чтобы рассматриваемый геометрический объект занял положение параллельное какой-либо плоскости проекций. Тогда на нее он, очевидно, спроецируется в натуральную величину.

Такое преобразование комплексного чертежа может быть осуществлено двумя основными способами:

1. Способом вращения, при котором оставляют неизменной систему плоскостей проекций, а меняют положение заданного геометрического объекта путем его вращения вокруг одной или последовательно вокруг двух подходящим образом выбранных осей так, чтобы интересующие нас прямые или плоскости оказались параллельными одной из плоскостей проекций. В качестве оси вращения обычно выбирают прямую, перпендикулярную одной из плоскостей проекций.

2. Способом замены плоскостей проекций, при котором оставляют неизменным положение в пространстве геометрического объекта, а заменяют одну или последовательно обе плоскости проекций так, чтобы интересующие нас прямые или плоскости оказались параллельными одной из новых плоскостей проекций.

Этими способами также можно решать задачи на приведение геометрических объектов в проецирующее положение.

Способ вращения вокруг проецирующей оси

Рассмотрим вращение точки А вокруг оси i, перпендикулярной горизонтальной плоскости проекций П1 (рис. 4.1). Ось вращения проецируется на плоскость П1 в точку, а на плоскость П2 — в прямую, перпендикулярную оси ОХ. Траекторией движения точки А будет окружность, лежащая в плоскости вращения, параллельной плоскости П1, с центром вращения в точке О, лежащей на оси, и с радиусом вращения ОА (рис. 4.1, а).

Траектория движения точки проецируется на плоскость П1 в натуральную величину, а на плоскость П2 — в виде прямой, параллельной оси ОХ. Радиус окружности проецируется на плоскость П1 в натуральную величину. Таким образом, горизонтальная проекция А1 точки А движется по окружности, а фронтальная проекция А2 — по прямой, параллельной оси ОХ.

Для того, чтобы повернуть точку А на угол j, откладывают этот угол на горизонтальной проекции (рис. 4.1, б) и получают горизонтальную проекцию А1 точки А в новом положении А1*. Фронтальную проекцию А2* этой точки находят с помощью линии проекционной связи, которую проводят из точки А1* до пересечения с прямой, проведенной из точки А2 параллельно оси ОХ.

Рис. 4.1. Вращение точки вокруг горизонтально-проецирующей оси

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является частным случаем способа вращения вокруг проецирующей оси, с той лишь разницей, что геометрический объект можно не только вращать, но и перемещать вдоль плоскости, параллельной одной из плоскостей проекций.

При перемещении отрезка прямой в новое положение таким образом, что его крайние точки движутся параллельно какой-либо плоскости проекций, длина проекции отрезка на эту плоскость остается неизменной (рис. 4.2).

Рис. 4.2. Плоскопараллельное перемещение отрезка прямой.

Преобразуем последовательно отрезок прямой линии общего положения АВ в положение горизонтали, затем фронтально-проецирующее положение. Для этого расположим фронтальную проекцию А2В2 отрезка АВ параллельно оси ОХ (А2*В2* параллелен ОХ) в любом месте чертежа. При этом точки А1 и В1 перемещаются в новое положение по прямым, параллельным оси ОХ, и будут лежать на линиях связи с А2*, В2* соответственно.

Тогда новая горизонтальная проекция займет положение А1*В1*. Очевидно, что А1*В1*- натуральная величина отрезка АВ, т.к. А*В* является горизонталью. Затем А1*В1* переместим в новое положение, чтобы А1**В1** была перпендикулярна оси ОХ. Тогда А2** = В2**, т.е. АВ займет положение проецирующей прямой. Следует заметить, что при определение натуральной величины АВ, которой является А1*В1*, удаленность проекции А2*В2* от оси ОХ не играет роли. Важно лишь выполнение двух требований: А2*В2* должна быть равна А2В2 и параллельна оси ОХ.

Способ замены плоскостей проекций

Способ замены плоскостей проекций состоит в том, что одна из основных плоскостей проекций П1 или П2 заменяется новой плоскостью проекций П4, подходящим образом расположенной относительно изображаемого геометрического объекта, но перпендикулярной незаменяемой плоскости проекций.

В результате замены одной из основных плоскостей на плоскость проекций П4 получаем вместо старой системы плоскостей проекций П1/П2 новую систему П1/П4 (рис. 4.3), если заменялась плоскость П2, и систему П2/П4, если заменялась плоскость П1.

Рис. 4.3. Интерпретация способа замены плоскостей проекций

Например, на рис. 4.3а плоскость П4 может выступать в роли фронтальной плоскости проекций П2. На рисунке 4.3б, фигурными скобками отмечены расстояния от точки А до горизонтальной плоскости проекций П1. Естественно, как видно на рис. 4.3а, эти расстояния равны А2А12 = А4А14, так как высота точки А над плоскостью П1 проецируется как на П2, так и на П4 в виде одинаковых отрезков. Расстояние же до П2 и П4 от точки А могут быть различными, поэтому А1А12¹А1А14.

Способ замены плоскостей проекций рационально применять при решении следующих задач:

— определение натуральной величины отрезка прямой линии;

— определение натуральной величины плоской фигуры;

— определение натуральной величины двугранного угла;

— определение кратчайшего расстояния от точки до прямой линии или до плоскости;

— определение кратчайшего расстояния между двумя параллельными или двумя скрещивающимися прямыми.

Решение задач данным способом рассмотрим на нескольких примерах.

Определение длины отрезка общего положения

Для определения натуральной величины (длины) отрезка АВ прямой линии необходимо сделать этот отрезок прямой линии общего положения в новой системе плоскостей проекций линией уровня. Чтобы отрезок АВ стал линией уровня относительно новой плоскости проекций, заменим плоскость П2 на плоскость П4, параллельную АВ, и перейдем от системы П1/П2 к системе П1/П4. Новую ось проекций X14, выбираем параллельно А1В1 (рис. 4.4). Для построения новой проекции отрезка АВ проводим новые линии проекционной связи перпендикулярно оси Х14, и отмечаем на них новые проекции А4, В4 точек А и В. Для этого откладываем Ах1А4 = А2Ах, Вх1В4 = В2Вх.

Рис. 4.4. Преобразование прямой общего положения в прямую уровня.

Соединяя найденные точки А4, В4, получаем новую проекцию А4В4 отрезка АВ. Как видим, отрезок АВ в новой системе плоскостей проекций П1/П4 является линией уровня, так как А1В1 параллельна X14, а следовательно, АВ параллельна П4. Тогда, очевидно, что А4В4 является натуральной величиной отрезка АВ.

Определение натуральной величины плоской фигуры

Для определения натуральной величины плоской фигуры необходимо дополнительную плоскость построить так, чтобы она была параллельна рассматриваемой фигуре, и тогда на эту плоскость проекций плоская фигура спроецируется в натуральную величину. Если в качестве плоской фигуры выбрать треугольник, тогда задача формулируется следующим образом: преобразовать плоскость треугольника общего положения в новой системе плоскостей проекций в плоскость уровня.

Одной заменой плоскостей проекций эту задачу решить невозможно, так как необходимо соблюдать условие: новая плоскость должна быть перпендикулярна незаменяемой. Поэтому решим эту задачу двумя заменами: первой заменой введем плоскость, которая перпендикулярна треугольнику АВС, второй заменой – плоскость, параллельную треугольнику АВС.

Для того, чтобы построить плоскость П4, перпендикулярную треугольнику АВС, необходимо расположить ее так, чтобы она была перпендикулярна фронтали либо горизонтали треугольника АВС.

Пусть П4 перпендикулярна горизонтали, тогда новая ось Х14 должна быть перпендикулярна h1 (рис. 4.5).

Рис. 4.5. Преобразование плоскости общего положения в плоскость уровня.

Построим ее на произвольном расстоянии от треугольника А1В1С1. Затем из точек А1, В1, С1 проведем линии связи перпендикулярно Х14. На каждой из них от оси Х14 отложим отрезок, равный расстоянию от фронтальной проекции соответствующей точки до оси Х12. В результате получаем новую проекцию В4А4С4 треугольника АВС, которая представляет собой прямую, поскольку плоскость треугольника АВС перпендикулярна плоскости П4.

Второй заменой вводим вместо П1 плоскость П5, параллельную плоскости треугольника АВС. Тогда получается система плоскостей проекций П45, ось Х45 которой параллельна В4А4С4. Она может быть расположена на произвольном расстоянии от В4А4С4. Далее из точек В4 А4 С4 проводим линии связи перпендикулярно Х45, и на каждой из них от оси Х45 откладываем отрезок, равный расстоянию от горизонтальной проекции соответствующей точки до оси Х14. Получим точки А5, В5, С5, соединив которые имеем треугольник А5В5С5, который и является натуральной величиной треугольника АВС, поскольку в новой системе плоскостей проекций треугольник АВС параллелен плоскости П5.

Вопросы для самоконтроля

1. С какой целью осуществляется преобразование комплексного чертежа?

2. В чем заключается способ вращения вокруг проецирующей оси?

3. Назовите основные способы преобразования комплексного чертежа?

4. В чем сущность способа плоскопараллельного перемещения.

5. В чем заключается способ замены плоскостей проекций?

Источник

Читайте также:  Этапы планирования способы принятия оптимальных решений
Оцените статью
Разные способы