- Защита трубопроводов от коррозии
- Содержание статьи
- Защита подземных трубопроводов от коррозии
- Таблица. Скорость коррозии металла.
- Способы защиты трубопроводов от коррозии
- Электрохимическая защита трубопроводов от коррозии
- Катодная защита трубопроводов от коррозии
- Протекторная защита от коррозии трубопроводов
- Анодная защита от коррозии трубопроводов
- Защита трубопровода от коррозии подлит срок их службы
- Видео про з ащиту трубопроводов от коррозии.
- Статьи по теме
- Флокуляция
- Технический углерод
- Седиментация
- Пассивирование
- Оксидирование
- Анодирование металла
- Гальваническое покрытие
- Процесс коррозии
- Ингибитор коррозии
- Коррозия трубопроводов и способы её предупреждения (2 часа).
- О методах и способах борьбы с коррозией трубопроводов
- Библиографическое описание:
Защита трубопроводов от коррозии
Содержание статьи
Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации. Производств труб для прокладки под землей осуществляется из металлов самых разных типов. Со временем они подвергаются коррозии, что ведет к их разрушению. Данный процесс является неизбежным, но его можно отсрочить с помощью некоторых защитных способов.
Защита подземных трубопроводов от коррозии
Трубопроводы разных видов нашли широкое применение в современном мире. Они практически всегда спрятаны пол землей. Процесс образования коррозии на них не относится к разряду тех, которые можно избежать. Его можно только отсрочить на некоторый промежуток времени. Для этого используются специальные составы, которые на металлической поверхности образуют небольшую защитную пленку. Она не дает агрессивной подземной среде влиять на структуру трубопровода.
Защита трубопроводов от коррозии направлена на то, чтобы остановить все окислительные процессы.
Внимание: Стоит отметить, что на трубах коррозия образуется как внутри, так и снаружи. Внутренняя их часть страдает от того, что коррозийный налет появляется в результате протекания по ним агрессивных веществ, вызывающих окислительные процессы. Внутренняя часть страдает от высокого уровня влажности почвы.
Защитная пленка должна находиться и внутри и снаружи по понятным причинам. Только в этом случае можно предотвратить быстрее появление коррозийного налета, который обладает разрушающими свойствами.
Защита трубопроводов необходима для разных видов коммуникаций. Сегодня защитные способы применяются не только для водопроводных труб, которые страдают от появления ржавчины, но и для газопровдов.
Защита водопроводных труб необходимо по причине того, что по ним вода поступает на предприятия и в дома людей. Она должна быть без всяких примесей. Если трубы ржавые, то водопроводная жидкость будет иметь неприятный оранжевый оттенок. Такая вода не годится для употребления в пищу. Ее даже не используют на промышленных объектах, потому что она может повлиять на свойства выпускаемой продукции.
Таблица. Скорость коррозии металла.
Балл | Скорость коррозии | Группа стойкости |
---|---|---|
1 | 10.1 | нестойкие |
Способы защиты трубопроводов от коррозии
Сегодня имеется большое количество методов защиты водопроводов от налета коррозии. Они основаны на том, чтобы металл, из которого сделаны трубы, вступил в реакцию с вводимыми веществами и растворами. В результате образуется небольшая пленка, которая обеспечивает защиту. В настоящее время выделяют следующие способы защиты трубопроводов от коррозии:
Электрохимическая защита трубопроводов от коррозии
Трубопроводы данным методом обрабатываются уже много лет. Для этой цели используются растворы электролитов. Благодаря данному методу на металлической поверхности труб появляется плотная защитная пленка высокой прочности. Она не дает агрессивной среде проникнуть в глубокие слои труб. Эффект защиты сохраняется на длительный период.
Катодная защита трубопроводов от коррозии
Данный процесс представляет собой использование электрического тока. Он подается в постоянном режиме, чтобы пленка для защиты металла не разрушалась.
Протекторная защита от коррозии трубопроводов
Данный способ защиты является одним из самых распространенных. Она является самой доступной и не затратной. Ведь для ее воплощения нет необходимости тратить электрический ток. Этот методы заключается в нанесении на поверхность любых труб из металлов сплавов других элементов, которые образуют на их поверхности плотную защитную пленку. Благодаря ней все процессы окисления прекращаются. Для этой цели используются сплавы многих металлов: магний, цинк. В некоторых ситуациях применяется алюминиевый сплав. Данный метод подходи для того, чтобы защищать трубы, которые располагаются под землей.
Анодная защита от коррозии трубопроводов
Данный защитный метод основан на методе анодирования. Он не часто используется по причине того, что он является не экономичным. Для него постоянно требуется подача электрического тока, что приводит к увеличению денежных и энергетических затрат.
Защита трубопровода от коррозии подлит срок их службы
У всех методов защиты трубопроводов имеется большое количество достоинств. Они заключаются в:
- увеличении уровня прочности труб,
- увеличении уровня устойчивости к влиянию агрессивной среды,
- продлении срока службы трубопроводов самых разных типов,
- увеличении твердости поверхности труб и внутри и снаружи.
Благодаря всем методам защиты удается обеспечить длительный эксплуатационный срок всех трубопроводов. Они дают им возможность прослужить не мене десятка лет.
Видео про з ащиту трубопроводов от коррозии.
Статьи по теме
Флокуляция
Практически наиболее важна флокуляция в водной среде, обусловленная действием растворённых в ней высокомолекулярных соединений (полиэлектролитов или неионогенных полимеров).
Технический углерод
Технический углерод — высокодисперсный углеродистый материал, образующийся при неполном сгорании или термическом разложении углеводородов (природных или промышленных газов, жидких продуктов нефтяного или каменноугольного происхождения).
Седиментация
Седиментация в дисперсных системах с жидкой и особенно газовой дисперсионной средой часто сопровождается укрупнением седиментирующих частиц вследствие коагуляции и (или) коалесценции.
Пассивирование
Пассив и рование, пассивация металлов , переход поверхности металла в пассивное состояние, при котором резко замедляется коррозия.
Оксидирование
В современном мире имеется большое количество методов, которые используются для борьбы с образованием коррозии на поверхности металлов. Метод образования оксидной пленки является одним из самых эффективных.
Анодирование металла
В современном мире имеется большое количество методов обработки металлов и металлических изделий. Они применяются и в промышленных масштабах, и в домашних условиях.
Гальваническое покрытие
В современном мире большую популярность получила процедура нанесения на металлические материалы различных веществ, которые предотвращают образование на них коррозийного налета.
Процесс коррозии
В современном мире из металлов самых разных видов производится большое количество продукции. Металлические материалы присутствуют в разных отраслях промышленности в виде станков и машин, инструментов.
Ингибитор коррозии
Ингибитор не является каким-то конкретным веществом. Так называют целуют группу веществ, которые направлены на остановку или задержку протеканий каких-либо физических или физико-химических процессов.
Источник
Коррозия трубопроводов и способы её предупреждения (2 часа).
Коррозия — это процесс разрушения металла в результате электрохимического или химического воздействия окружающей среды. Для промысловых трубопроводов различают наружную и внутреннюю коррозию.
Химическая коррозия внутренней поверхности труб происходит при добыче сернистых нефтей, которые разрушают металл. Химическая коррозия характеризуется равномерным разрушением металла по всей поверхности. Она обычно менее интенсивная, чем электрохимическая.
Природа электрохимической коррозии состоит в том, что металл трубы не химически чистый элемент, а технический сплав,- в котором содержатся вкрапления элементов, отличающихся по своей активности. Когда поверхность металла смочена полярной (электропроводной) жидкостью — водой, то между вкраплениями, отличающимися по активности, возникает электрический ток. При соприкосновении с полярной водой атомы металла, расположенные на поверхности, подвергаются воздействию силового поля молекул воды. Это взаимодействие может быть настолько сильным, что происходит ослабление связи атома металла со своими внешними электронами и ион металла (Fe 2+ ) с более активного вкрапления, несущий положительный заряд, покидает узел кристаллической решетки и переходит в волу. При этом на поверхности более активного вкрапления металла (анодного участка) остаются освобождающиеся электроны 2е, перемещающиеся по металлу к менее активным вкраплениям (катодный участок). На катодных участках эти электроны взаимодействуют с кислородом и в результате его ионизации, происходит образование гидроксильной группы ОН, несущей отрицательный заряд.
2е + 1/2О2 + Н2О = 2ОН ионы Fe 2+ взаимодействуют в растворе с образованием закиси железа Fe 2+ + 2OH = Fe(OH)2; при наличии в воде свободного кислорода закись железа окисляется до окиси железа, которая выпадает в осадок:
Интенсивность протекания электрохимической реакции в основном зависит от водородного показателя рН среды. Если рН 7 — щелочная, а при рН =7 — нейтральная. Среда считается сильно коррозионно-агрессивной, если рН
Способы предупреждения внутренней коррозии трубопровода подразделяют на механические, химические и технологические.
К механическим способам относятся покрытия внутренней поверхности трубопровода различными лаками, эпоксидными смолами, цинко-силикатными покрытиями.
Химический способ – применение — ингибиторов коррозии. Наиболее эффективные ингибиторы коррозии И-1-А и ИКСГ-1. Эффективность их защитного действия составляет 95-98 %.
Таблица 5.1 — Расход ингибитора коррозии зависит от скорости коррозии
Скорость коррозии, мм/ год | до 0, 55 | 0,55-1,1 | 1,1 |
Расход ингибитора, г/м 3 | 50-70 | 80-100 | 120 — 150 |
Блочные автоматизированные установки для приготовления и дозировки деэмульгаторов и ингибиторов коррозии типа БР-2,5, БР — 10Г БР-23 могут быть использованы в любой-точке трубопровода промысловой системы сбора и подготовки нефти на участке от скважин до установки комплексной подготовки нефти.
Установки типа БР-2,5, БР-Ш смонтированы на раме-санях в теплоизоляционной будке, которая герметично разделена на два отсека: технологический и отсек системы контроля и управления. Отсеки обогреваются взрыво-защищенными электронагревателями. В технологическом отсеке смонтирована технологическая ёмкость с вмонтированным трубчатым электронагревателем, шестеренный и дозировочные насосы, запорно-регулирующая арматура и датчики системы контроля и управления. Технологическая ёмкость предназначена для хранения и подогрева реагента. С помощью насоса заполняют ёмкость, проводят периодическую циркуляцию реагента по линии ёмкость-насос-емкость для поддержания постоянной его концентрации в ёмкости и предотвращения загустевания ингибитора коррозии. Насос включается и выключается автоматически по заданной программе.
Таблица 5.2 — Техническая характеристика блочных автоматизированных установок
Параметры | Тип установки | ||
БР-2,5 | БР-10 | БР-25 | |
Размер дозы, г/т | 10-50 | 10-50 | 10-50 |
Пропускная способность | 500-1000 | 1000-5000 | 5000-10000 |
сырьевого трубопровода, т/сут. | |||
Наибольшая подача насоса, л/ч | 2,5 | ||
Наибольшее давление нагнетания, МПа: | |||
при дозировке концентриро- | |||
ванных реагентов; | |||
При дозировке водных растворов реагентов. | — | ||
Кинематическая вязкость реагентов, м 2 /с не более | | | |
Температура дозируемого реагента, °С — | 20 — 60 | 20 — 60 | 2 0 — 60 |
Температура окружающей среды, °С | | | |
Масса, кг |
Дозировочным насосом непрерывно подают реагент в трубопровод. Размер дозы регулируют вручную поворотом лимба регулировочного механизма. Установка типа БР-25 состоит из двух автономных блоков — технологического блока и ёмкости, каждый блок смонтирован на раме-санях. В технологическом отсеке смонтированы дополнительно резервный насос-дозатор, насос для воды и смеситель. Подавая в смеситель в определенных соотношениях воду и концентрированный реагент, в установке можно приготовить и дозировать водный раствор реагентов заданной концентрации.
Источник
О методах и способах борьбы с коррозией трубопроводов
Рубрика: Архитектура, дизайн и строительство
Дата публикации: 13.04.2020 2020-04-13
Статья просмотрена: 283 раза
Библиографическое описание:
Тиханова, М. М. О методах и способах борьбы с коррозией трубопроводов / М. М. Тиханова. — Текст : непосредственный // Молодой ученый. — 2020. — № 15 (305). — С. 162-164. — URL: https://moluch.ru/archive/305/68767/ (дата обращения: 19.11.2021).
В данной научной статье рассмотрены ключевые направления защиты от коррозии, ее основные виды и причины возникновения. Основные факторы, негативно влияющие на состояние трубопроводов.
Ключевые слова: коррозия, виды коррозионных разрушений, современные методы, защита неметаллическими покрытиями, легирование, наружная коррозия подземных трубопроводов.
В настоящее время основной проблемой при обслуживании и эксплуатации подземных трубопроводов является коррозия, которая подразделяется на внутреннюю и наружную [1с.156]. В качестве одной из причин появления внутренней коррозии является наличие в воде растворенного кислорода. Кислород попадает в тепловые сети, преимущественно вместе с подпиточной водой.
Как правило, скорость коррозии напрямую зависит от количества кислорода и скорости диффузии данного растворенного кислорода. Таким образом, чем больше растворенного кислорода, тем быстрее происходит коррозийный процесс. Борьба с внутренней коррозией происходит с помощью подпитки трубовых сетей деаэрированной водой, с помощью которой внутренняя коррозия успешно ликвидируется. Согласно статистике, тепловые сети, работающие в течение 70 % времени и находящиеся в температурном режиме (70–80°С) больше подвергаются наружной коррозии, чем все остальные.
Выделяют два основных вида наружной коррозии: сплошная равномерная и язвенная очаговая [2с.246]. При сплошной коррозии — разрушение металла происходит в основном с одинаковой скоростью. Такие повреждения имеют место в основном при разрушении поверхностей на открытом воздухе. В качестве одного из главных факторов, который способствует развитию именно такого рода повреждениям является аэрация.
Рис. 1. Виды коррозионных разрушений
Однако, наибольшую опасность, именно по скорости распространения, представляют собой именно разрушения сквозные, которые также называются язвенной очаговой коррозий. Скорость распространения язвенных очаговых повреждений варьируется в пределе 1,4–1,8 мм/год, так как сплошные равномерные повреждения распространяются со скоростью 0,1–0,2 мм/год.
Наружная коррозия подземных трубопроводов по своей природе делится на химическую, электрохимическую и электрическую [3с.284].
Химическая коррозия возникает в результате воздействия на металл различных жидкостей и газов из почвы через изоляцию на поверхности труб. Такую коррозию относят к виду сплошной. При ней толщина стенок труб уменьшается равномерно.
Электрохимическая коррозия образуется в результате взаимодействия металла (электрод) с вредными растворами в грунте (электролит). Она в основном имеет тип коррозии очаговой. В результате на трубопроводах появляются локальные язвы и глубокие каверны, которые могут развиваться через отверстия в стенке трубы.
Электрическая коррозия возникает, когда электрический ток, протекающий через землю, действует на трубу. Токи проникают в землю в результате утечек из рельсов электрифицированного транспорта — они называются странствующими. Проникнув в трубопровод, они движутся по нему, где около тяговой подстанции покидают трубопровод в грунте, образуя очаги электрической коррозии.
К сожалению, нет метода, чтобы можно было предотвратить разрушение стенок трубопровода, однако в наших силах уменьшить скорость распространения разрушения. К современным методам можно отнести защиту неметаллическими покрытиями. К ним относятся: масляные и алкидные краски, битумные и синтетические лаки, а также полимерные материалы, образующие защитную пленку на поверхности, которая помогает предотвратить взаимодействие материала с окружающей средой и влагой.
Этот способ обработки металла при помощи лакокрасочных материалов является самым удобным, так как произвести обработку можно на строительной площадке. Эффективность этого метода будет зависеть от многих факторов: от климата, качества защитного материала и его количества.
Следующий способ это — легирование, то есть добавка прочих металлов. Добавление к железу Mo, Mn, W, Cr, Al, Ni, в качестве легирующих добавок получают нержавеющие стали. Такой материал ржавеет с малой скоростью.
Подводя итоги, можно сказать, что в настоящее время на состояние трубопроводов негативно влияют многие факторы: воздействие различных жидкостей и газов из почвы, появление в грунте вредных растворов, проникновение электрического тока. В результате работы, установлены основные причины возникновения коррозии, были проанализированы методы борьбы с ней. Из всего вышесказанного, можно сделать вывод, что за счет эффективной и надежной защиты трубопроводов сокращаются финансовые издержки на их обеспечение и содержание.
- Кузнецов М. В. Противокоррозионная защита трубопроводов и резервуаров / М. В. Кузнецов, В. Ф. Новоселов, П. И. Тугунов и др. — Москва: Недра, 2016. — 238 с.
- Ионин, А. А. Теплоснабжение / А. А. Ионин. — Москва: Стройиздат, 2010. — 336 c.
- Стрижевский И. В., Сурис М. А. Защита подземных теплопроводов от коррозии. М.: Энергоатомиздат, 2012. — 344 с.
Источник