Как избежать типичных ошибок, возникающих при выполнении заданий ЕГЭ по математике
Дземяшкевич Е.В., преподаватель математики
(Факультет довузовской подготовки ТулГУ)
Чтобы подготовиться к ЕГЭ по математике, необходимо уже сегодня перестать комплексовать и паниковать перед предстоящим единым экзаменом. Уже сейчас можно сказать, что на ЕГЭ можно получить вполне приличное количество баллов: время для форсированной подготовки еще не потеряно. Конечно, ЕГЭ — это не легко и просто, но и не безнадежно. Важно, чтобы школьник сам честно сформулировал для себя планируемый результат обучения. Это вовсе не означает, что выпускник, наметивший себе «3», может получить только «3» и не более, напротив, ориентируясь на намеченный результат, может и должен получить на один балл выше. Ученики, ориентированные на получение «4», должны помнить, что если постараться, то можно получить и «5».
Но не всегда так получается. Возможны ошибки при решении заданий, недостатки при подготовке, которые приводят к низким результатам ЕГЭ.
Для устранения недостатков в подготовке учеников к ЕГЭ по математике, необходимо совершенствовать процесс преподавания: активнее включать в учебный процесс идеи дифференцированного обучения; использовать практические разработки по индивидуализации обучения (создание индивидуальных модулей обучения), учитывать рекомендации психологов по организации усвоения и пр.).
Поговорим подробнее об ошибках, которые возможны при выполнении заданий ЕГЭ. Рассмотрим важные темы, встречающиеся на экзамене по математике.
Тема | Ошибки | Рекомендации |
---|---|---|
преобразование иррациональных выражений | При кажущейся простоте этого задания, решаемость его далека от 100%. Сложно заставить себя при выполнении этих заданий сделать проверку. Казалось бы, все свойства действий с корнями просты. Вроде всё просто. Только не все выпускники могут вычислить или, не обращая внимания на степень корня, извлекают корень квадратный. | Не торопясь, выполнить все действия на черновике (обязательно записать все этапы решения). |
преобразование показательных выражений | Выполнить проверку показательного выражения сложно | Не торопясь, выполнить все действия на черновике (обязательно записать все этапы решения); можно составить аналогичное задание и попытаться найти закономерность. |
преобразование логарифмических выражений | Особенность темы заключается в том, что большинство одиннадцатиклассников узнают о логарифмах только в ноябре-декабре. Времени на «присвоение знаний» нет. Многие выпускники бояться решать задания с логарифмами, несмотря на то, что все свойства логарифмов они знают. Самое сложное при выполнении этих заданий – выполнить проверку. | Не торопясь, выполнить все действия на черновике (обязательно записать все этапы решения). |
линейные уравнения | Решают все, правда, если a 0. Как только уравнение решается автоматически, возможны ошибки. Например, . Что это? Невнимательность? Досадная ошибка? | При решении линейных уравнений никто не застрахован от ошибок. Обязательно выполняем проверку. |
квадратные уравнения | Очень большой процент ошибок приходится на квадратные уравнения. Ошибки начинаются с вычисления дискриминанта. В формулах для вычисления корней есть ошибки для –b и 2a. Не стоит упоминать про формулу «четного коэффициента» — много ошибок, особенно у сильных учеников. Важно повторить теорему Виета. | Не стоит пренебрегать проверкой корней с помощью теоремы Виета или подстановкой: она занимает меньше времени, чем полная проверка всего решения сложного задания. |
дробно-рациональные уравнения | Школьники решают очень тяжело. Серьезные проблемы возникают при решении такого уравнения: даже записывая такое формальное условие- знаменатель не равен нулю – они о нем тут же забывают. | Чтобы избежать многих ошибок, проверка нужна обязательно: подстановка и удовлетворение условию «знаменатель не равен нулю». Обязательно включать в каждую домашнюю работу хотя бы одно задание на решение дробно рационального уравнения |
рациональные неравенства | Линейные: чаще всего при делении на отрицательное число, неравенство вида: |
© Факультет довузовской подготовки Тульского государственного университета
300012, город Тула, проспект Ленина, 84, кор. 8, 3-й учебный корпус ТулГУ
(4872) 25-46-83, 25-46-84, 717-535
Тульский государственный университет
300012, город Тула, проспект Ленина, 92
(4872) 33-24-10, 35-34-44
Приемная комиссия ТулГУ: (4872) 332-332
Для того, чтобы мы могли качественно предоставить Вам услуги, мы используем cookies, которые сохраняются на Вашем компьютере (сведения о местоположении; ip-адрес; источник, откуда пришел на сайт пользователь, эта же информация используется для обработки статистических данных использования сайта посредством интернет-сервисов Google Analytics и Яндекс.Метрика). Продолжая использовать сайт, Вы соглашаетесь на использовании cookies. Отключить cookies Вы можете в настройках своего браузера.
Источник
Статья. Проблемы, типичные ошибки учащихся, допускаемые при решении уравнений и неравенств.
Задание «Проблемы, типичные ошибки учащихся»
Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.
Обидно получать плохие оценки из-за ошибок «на ровном месте». Глупые ошибки – проблема многих учеников: случайная потеря знака, скобки, необоснованное изменение чисел, пропуски переменных и всевозможные ляпы. Сами ученики порой не могут объяснить, чем вызваны эти ошибки.
Решая уравнения и неравенства учащиеся допускают типичные ошибки:
· Незнание правил, определений, формул.
· Непонимание правил, определений, формул.
· Неумение применять правила, определения, формулы.
· Неверное применение формул.
· Невнимательное чтение условия и вопроса задания.
· Раскрытие скобок и применение формул сокращенного умножения.
Какие же проблемы, трудности общего характера возникают у учащихся при изучении математики ( их несомненно можно отнести и к трудностям, которые возникают у уч-ся при изучении темы «Уравнения и неравенства»):
· Пропуски занятий приводят к незнанию материала, пробелам в знаниях.
· Поверхностное, невдумчивое восприятие нового материала приводят к непониманию его.
· Недостаточная мозговая деятельность приводит к неумению применять правила, определения и формулы .
· Неряшливый, неаккуратный почерк ученика приводит к досадным ошибкам . Учащиеся не всегда сами понимают, что именно они написали.
· Усталость . Чрезмерная нагрузка и недостаточный сон приводит к снижению внимания, скорости мышления и, как следствие, к многочисленным ошибкам.
· Кратковременное или полное переключение внимания с одной деятельности на другую (учебную или внеучебную) приводит к утрате только что воспринятого материала, приходится все начинать сначала.
· Скорость работы. Низкая скорость выполнения мыслительных операций часто мешает ученику контролировать себя и это может стать еще одной причиной ошибки. «Зависание» с какой-нибудь одной частью задания удаляет из «оперативной памяти» информацию о другой, в которой допускается не вынужденная ошибка. Скорость работы определяется физиологией конкретного школьника и навыками выполнения тех или иных операций.
· Мотивация. Следствие низкой мотивации – потеря внимания и ошибка.
Ошибки, допускаемые обучающимися при решении уравнений и неравенств, самые разнообразные: от неверного оформления решения до ошибок логического характера.
1. Самая типичная ошибка состоит в том, что учащиеся при решении уравнений и неравенств без дополнительных пояснений используют преобразования, нарушающие равносильность, что приводит к потере корней и появлению посторонних корней.
Предлагаю на конкретных примерах рассмотреть ошибки подобного рода и определить способы их предупреждения и исправления, но прежде всего хочу обратить внимание на следующую мысль: не надо бояться приобрести посторонние корни, их можно отбросить путем проверки ,надо бояться потерять корни.
а) Решить уравнение:
log3(5 – x) = 3 – log3(–1 – x).
Это уравнение учащиеся очень часто решают следующим образом.
log3(5 – x) = 3 – log3(–1 – x), log3(5 – x) + log3(–1 – x) = 3, log3((5 – x)( –1 – x)) = 3, (5 – x)( –1 – x) = 33, x2 – 4x – 32 = 0,
Учащиеся часто, не проводя дополнительных рассуждений, записывают оба числа в ответ. Но как показывает проверка, число x = 8 не является корнем исходного уравнения, так как при x = 8 левая и правая части уравнения теряют смысл. Проверка показывает, что число x = –4 является корнем заданного уравнения.
б) Решить уравнение
Область определения исходного уравнения задается системой
Для решения заданного уравнения перейдем к логарифму по основанию x, получим
Мы видим, что левая и правая части этого последнего уравнения при x = 1 не определены, но это число является корнем исходного уравнения (убедиться в этом можно путем непосредственной подстановки). Таким образом, формальный переход к новому основанию привел к потере корня. Чтобы избежать потери корня x = 1, следует указать, что новое основание должно быть положительным числом, отличным от единицы, и рассмотреть отдельно случай x = 1.
2. Целая группа ошибок, вернее сказать недочетов, состоит в том, что учащиеся не уделяют должного внимания нахождению области определения уравнений, хотя именно она в ряде случаев есть ключ к решению.
3. Типичной ошибкой учащихся является то, что они не владеют на нужном уровне определениями понятий, формулами, формулировками теорем, алгоритмами. Хочу подтвердить сказанное следующим примером.
Ученик предлагает следующее ошибочное решение этого уравнения:
х = –2.
Поверка показывает, что х = –2 не является корнем исходного уравнения.
Напрашивается вывод, что заданное уравнение корней не имеет.
Однако это не так. Выполнив подстановку х = –4 в заданное уравнение, мы можем убедиться, что это корень.
Предлагаю проанализировать, почему произошла потеря корня.
В исходном уравнении выражения х и х + 3 могут быть одновременно оба отрицательными или оба положительными, но при переходе к уравнению эти же выражения могут быть только положительными. Следовательно, произошло сужение области определения, что и привело к потере корней.
Чтобы избежать потери корня, можно поступить следующим образом: перейти в исходном уравнении от логарифма суммы к логарифму произведения. Возможно в этом случае появление посторонних корней, но от них, путем подстановки, можно освободиться.
4. Многие ошибки, допускаемые при решении уравнений и неравенств, являются следствием того, что учащиеся очень часто пытаются решать задачи по шаблону, то есть привычным путем. Предлагаю рассмотреть это на следующем примере.
Попытка решать это неравенство привычными алгоритмическими способами не приведет к ответу. Решение здесь должно состоять в оценке значений каждого слагаемого левой части неравенства на области определения неравенства.
Найдем область определения неравенства:
Для всех x из промежутка (9;10] выражение имеет положительные значения (значения показательной функции всегда положительны).
Для всех x из промежутка (9;10] выражение ( x – 9) имеет положительные значения, а выражение lg(x – 9) имеет значения отрицательные или ноль, тогда выражение
– (x – 9) lg(x – 9) положительно или равно нулю.
Окончательно имеем x ∈ (9;10]. Хочу заметить, что при таких значениях переменной каждое слагаемое, стоящее в левой части неравенства, положительно (второе слагаемое может быть равно нулю), а значит их сумма всегда больше нуля. Следовательно, решением исходного неравенства является промежуток (9;10].
5. Одна из ошибок связана с графическим решением уравнений.
Некоторые учащиеся, решая это уравнение графически (хочу отметить, что его другими элементарными способами решить нельзя), получают лишь один корень (он является абсциссой точки, лежащей на прямой y = x), ибо графики функций
и
−
это графики взаимно обратных функций.
На самом деле исходное уравнение имеет три корня: один из них является абсциссой точки, лежащей на биссектрисе первого координатного угла y = x, другой корень и третий корень
Убедиться в справедливости сказанного можно непосредственной подстановкой чисел
и
в заданное уравнение.
Этот пример удачно иллюстрирует следующий вывод: графическое решение уравнения f(x) = g(x) “безупречно”, если обе функции «разномонотонны» (одна из них возрастает, а другая – убывает), и недостаточно математически корректно в случае одномонотонных функций (обе либо одновременно убывают, либо одновременно возрастают).
6. Ряд типичных ошибок связан с тем, что учащиеся не совсем корректно решают уравнения и неравенства на основе функционального подхода. Остановлюсь на типичных ошибки такого рода.
а) Решить уравнение x х = x.
Функция, стоящая в левой части уравнения, – показательно-степенная и раз так, то на основание степени следует наложить такие ограничения: x > 0, x ≠ 1. Прологарифмируем обе части заданного уравнения:
или
Откуда имеем x = 1.
Логарифмирование не привело к сужению области определения исходного уравнения. Но тем не менее произошла потеря двух корней уравнения; непосредственным усмотрением мы находим, что x = 1 и x = –1 являются корнями исходного уравнения.
7. При решении неравенств с помощью подстановки мы всегда сначала решаем новое неравенство относительно новой переменной, и лишь в его решении делаем переход к старой переменной.
Школьники очень часто ошибочно делают обратный переход раньше.Этого делать не следует.
8.Хочу привести пример еще одной ошибки, связанной с решением неравенств.
.
Привожу ошибочное решение, которое очень часто предлагают учащиеся.
Возведем обе части исходного неравенства в квадрат. Будем иметь:
,
откуда получаем неверное числовое неравенство , что позволяет сделать вывод: заданное неравенство не имеет решений.
Однако полученный вывод неверен, например, при х = 1000 имеем
,
,
.
Полученное числовое неравенство верно, а значит х = 1000 является решением.
Значит, заданное неравенство имеет решение, и, следовательно, приведенное выше решение ошибочно.
Привожу правильное решение. Найдем область определения исходного неравенства. Она задается системой
или
откуда
.
Ясно, что на интервале (10;1000) нет решений, ибо левая часть заданного неравенства при любом х из этого интервала не имеет смысла.
Рассмотрим два случая.
а) , откуда х > 100. С учетом области определения исходного неравенства имеем промежуток
. Для всех х из этого промежутка левая часть исходного неравенства неотрицательна (как значение арифметического квадратного корня), а правая часть – отрицательна. Делаем вывод о том, что
– решение заданного неравенства.
б) , откуда
. С учетом области определения исходного неравенства имеем промежуток
. Для всех х из промежутка
имеют смысл обе части неравенства и они имеют неотрицательные значения, значит обе части заданного неравенства мы можем возвести в квадрат. Будем иметь:
, откуда
. Это неверное числовое неравенство позволяет сделать вывод: значения х из промежутка
решениями исходного неравенства не являются.
Ответ: .
9. Типичная ошибка при решении уравнений, неравенств и их систем состоит в том, что неверно преобразовываются выражения.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.
Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.
Пример неосознанного применения алгоритма: получив уравнение sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x .
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.
Систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении». Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся.
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей:
а) умения обнаружить ошибку;
б) умения её объяснить и исправить.
В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:
· проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
· проверка правильности решения задач путём составления и решения задач, обратных к данной;
· оценка результата решения задачи с точки зрения здравого смысла;
· проверка аналитического решения графическим способом.
Способы исправления и предупреждения ошибок
Свести ошибки к минимуму способствуют следующие профилактические меры:
- Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
- Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
- При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
- Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
- Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.
Источник