Обеспечение бесперебойного электроснабжения
С каждым днем возрастают требования к надежности и сохранению работоспособности оборудования в аварийных ситуациях. Данная статья посвящена построению систем электропитания, обеспечивающих безотказное функционирование электрооборудования и рассказывает о разработанных специалистами компании ЭНЭЛТ.КОМ современных способах проектирования и конструирования устройств типа «Автоматический ввод резерва».
Жизнь современного человека невозможно представить без электричества. От надежного электроснабжения зависит работа заводов, фабрик, больниц и образовательных учреждений, объектов сельского хозяйства и ЖКХ. Электроснабжение в наши дни стало одним из краеугольных камней человеческой цивилизации.
Наверно всем знакома проблема, возникающая при отключении в доме электричества. Подобные перерывы в электроснабжении медицинских учреждений или промышленных предприятий со сложным технологическим процессом могут привести к человеческим жертвам и повреждению дорогостоящего оборудования. Поэтому для повышения надежности электроснабжения применяются устройства автоматического ввода резерва (АВР), предназначенные для автоматического переключения потребителя к другому источнику электроэнергии при пропадании основного. Чаще всего устройства АВР обеспечивают переключение между двумя независимыми линиями электроснабжения или переключение с основной линии на местный резервный источник, в качестве которого, как правило, используется дизель-генераторная установка. Для электроснабжения особо ответственных объектов могут применяться АВР для трех и четырех независимых источников.
В ПУЭ приводится классификация электроприемников по обеспечению надежности электроснабжения. Они подразделяются на I, II и III категории. К I категории относятся такие электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства. В первой категории также выделена особая группа электроприемни ков, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения основного оборудования. II группа — это электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. К III группе относятся все остальные электроприемники, не подходящие под определение I и II категорий (ПУЭ 1.2.17).
Наиболее жесткие требования предъявляются к электроприемникам I категории. Они должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания. Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника.
Устройства автоматического ввода резерва
Устройства АВР, применяемые в цепях 0,4 кВ, как правило, реализуются на следующих коммутационных аппаратах:
- контакторах (рис. 1). Это самая простая и распространенная система. Как правило, на контакторах реализуется схема два ввода — один выход или два ввода — два выхода. В первом случае схема может быть реализована как с приоритетом на основной ввод, так и без приоритета;
- реверсивных рубильниках с моторным приводом. Так же, как и в случае с контакторами, можно реализовать схему два ввода — один выход или взяв два реверсивных рубильника и сделать схему два ввода — два выхода («схема креста»), широко применяемую в вводных распределительных устройствах (ВРУ);
- автоматических выключателях с моторными приводами (рис. 2) можно реализовать как стандартные схемы АВР, так и схемы с алгоритмом работы АВР любой сложности, такие, как два ввода — один выход, два ввода — два выхода, а также комбинацию нескольких вводов, в том числе и вводов от дизель-генераторных установок и нескольких выходов.
Вторичные цепи управления АВР могут выполняться как на реле, так и на программируемом логическом контроллере (рис. 3). Преимущества контроллера в том, что при его использовании значительно уменьшается количество цепей в схеме и соответственно количество переходных контактов, которые, в свою очередь, снижают надежность работы АВР. При сложном алгоритме, где много вторичных цепей управления, использование контроллера значительно экономит место в щите, заменяя собой до нескольких десятков различных реле. При сложном алгоритме применение контроллера обходится намного дешевле, чем совокупность промежуточных реле и реле времени, а также других элементов. По трудоемкости монтаж АВР на контроллере занимает намного меньше времени, чем монтаж на реле. А в случае, когда необходимо изменить алгоритм работы АВР, добавить временные задержки или дополнительные блокировки. Все это можно сделать путем изменения программы контроллера, без дополнительного монтажа или демонтажа вторичных цепей управления АВР. Однако не всегда рационально и правильно использовать микроконтроллерные схемы управления. Например, в схеме АВР два ввода — один выход на контакторах использовать контроллер экономически необоснованно из-за простоты схемы на реле. Несмотря на все положительные качества микропроцессорного контроллера и популярность его у заводов-изготовителей НКУ, служба эксплуатации электроустановок зачастую отдает предпочтение схемам управления АВР, сделанным на базе электромеханических реле и контакторов, так как они в случае ремонта являются более наглядными и понятными.
Щиты АВР не всегда работают в автоматическом режиме, периодически приходится оперировать вводами вручную на период пусконаладочных или других видов работ. Ручной режим может осуществляться как по месту расположения щита, так и удаленно от него. Таким образом, некоторые системы АВР могут включать в себя три режима управления — автоматический, местный и дистанционный. При этом наиболее обоснованно применение автоматических выключателей или реверсивных рубильников с моторными приводами, которые в отличие от контакторов могут сохранять свое включенное состояние и без внешнего питания.
При проектировании отдельно стоящих шкафов АВР необходимо уделить внимание защите отходящих линий. Нередко можно увидеть, когда на вводе в шкаф АВР устанавливаются выключатели нагрузки, а аппараты защиты находятся в вышестоящем ВРУ или ГРЩ, доступ к которым не всегда имеет эксплуатирующий персонал. Если происходит короткое замыкание на отходящей линии, вначале отключается основной ввод. Реле контроля напряжения видит, что ввод пропал, и подает сигнал на включение резервного ввода, после чего срабатывает аппарат защиты резервной линии. Решить эту проблему можно следующим путем. Если это схема два ввода — один выход, то можно поставить общий аппарат защиты на выходе; если два ввода — два выхода, то заменить выключатели нагрузки на автоматические с соблюдением селективности с вышестоящими аппаратами, либо подключать реле контроля напряжения до защитного аппарата в вышестоящем щите, что бы при аварийном отключении реле контроля видело наличие напряжения и не давало команды на включение резервного ввода.
Не лишним будет включить в схему управления АВР аварийные дополнительные контакты защитных аппаратов для блокирования включения резервной линии питания в случае короткого замыкания на отходящей линии.
В заключение хотелось бы отметить, что проектирование таких устройств, как АВР, влияющих на сохранение работоспособности объектов в нештатных ситуациях, является серьезной задачей. Эти устройства применяются в системах бесперебойного электропитания, например, больниц, клиник и других медицинских учреждений, и благодаря их работе удается сохранить жизнь человека в критических ситуациях.
Вячеслав Марашкин, начальник отдела НКУ ООО «ЭНЭЛТ.КОМ»
Источник
Повышение устойчивости систем энергоснабжения
Повышение устойчивости систем энергоснабжения играет значительную роль в жизнедеятельности промышленных районов и объектов народного хозяйства. Повышение устойчивости системы энергоснабжения достигается проведением как общегородских, так и объектовых инженерно-технических мероприятий.
Создаются дублирующие источники электроэнергии, газа, воды и пара путем прокладки нескольких подводящих электро-, газо-, водо- и пароснабжающих коммуникаций и последующего их закольцовывания. Инженерные и энергетические коммуникации переносятся в подземные коллекторы, наиболее ответственные устройства (центральные диспетчерские распределительные пункты) размешаются в подвальных помещениях зданий или в специально построенных прочных сооружениях. На тех предприятиях, где укладка подводящих коммуникаций в траншеях или тоннелях не представляется возможной, производится крепление трубопроводов к эстакадам, чтобы избежать их сдвига или сброса. Затем укрепляются сами эстакады путем установки уравновешивающих растяжек в местах поворотов и разветвлений. Деревянные опоры заменяют на металлические и железобетонные.
Для обеспечения проведения спасательных и неотложных аварийно-восстановительных работ, а также производства в первое время после возникновения ЧС (в случае вывода из строя основных источников энергопитания) создается резерв автономных источников электро- и водоснабжения. Обычно это бывают передвижные электростанции и насосные агрегаты с автономными двигателями, например с двигателями внутреннего сгорания.
Устойчивость систем электроснабжения объекта повышается путем подключения его к нескольким источникам питания, удаленным один от другого на расстояние, исключающее возможность их одновременного поражения одним ядерным взрывом.
На объектах, имеющих тепловые электростанции, оборудуют приспособления для работы ТЭЦ на различных видах топлива, принимают меры по созданию запасов твердого и жидкого топлива, его укрытию и усилению конструкций хранилищ горючих материалов.
В сетях электроснабжения проводятся мероприятия по переводу воздушных линий электропередач на подземные, а линий, проложенных по стенам и перекрытиям зданий и сооружений, — на линии, проложенные под полом первых этажей (в специальных каналах).
При монтаже новых и реконструкции электрических сетей устанавливают автоматические выключатели, которые при коротких замыканиях и при образовании перенапряжений отключают поврежденные участки. Перенапряжения в линиях электропередач могут возникать в результате разрушений или повреждений отдельных элементов системы энергоснабжения объекта, а также при воздействии электромагнитных полей ядерного взрыва.
Большое значение для повышения устойчивости работы объекта имеет надежное снабжение его водой. Прекращение подачи воды может привести к приостановлению, производственного процесса и прекращению выпуска продукции даже тогда, когда объект народного хозяйства не будет разрушен при возникновении ЧС.
Водоснабжение объекта будет более устойчивым и надежным в том случае, если объект питается от нескольких систем или от двух-трех независимых водоисточников, удаленных друг от друга на безопасное расстояние. Гарантированное снабжение водой может быть обеспечено только от защищенного источника с автономным и тоже защищенным источником энергии. К таким источникам относятся артезианские и безнапорные скважины, которые присоединяются к общей системе водоснабжения объекта. При планировании мероприятий необходимо учитывать, что дебит этих источников не полностью обеспечивает потребности производства и ведения спасательных и неотложных аварийно-восстановительных работ.
Для большей надежности и маневренности на случай аварии или ремонта на объектах создаются обводные линии и устраиваются перемычки, которым подают воду в обход поврежденных участков, разрушенных зданий и сооружений. Пожарные гидранты и отключающие устройства размещаются на территории, которая не будет завалена в случае разрушения зданий и сооружений. Внедряются автоматические и полуавтоматические устройства, которые отключают поврежденные участки без нарушения работы остальной части сети. На объектах, потребляющих большое количество воды, применяется оборотное водоснабжение с повторным использованием воды для технических целей. Такая технология уменьшает общую потребность воды и, следовательно, повышает устойчивость водоснабжения объекта.
Важное и сложное мероприятие защита воды от заражения. В городах и на объектах народного хозяйства вода, предназначенная для питья, очищается и обеззараживается в очистных устройствах, находящихся на водопроводных станциях. На очистных сооружениях предусматриваются дополнительные мероприятия по очистке воды, поступающей из зараженных водоемов, от радиоактивных и отравляющих веществ и бактериальных средств.
В населенных пунктах сельской местности широко распространены подземные источники воды (шахтные колодцы, родники и др.). В них могут проникнуть радиоактивные и отравляющие вещества и различного вида бактерии. Поэтому проводятся инженерные мероприятия по защите водозаборов на подземных источниках воды.
Для обеспечения устойчивого и надежного снабжения предприятия газом предусматривается его подача в газовую сеть объекта от газорегуляторных пунктов (газораздаточных станций). При проектировании, строительстве и реконструкции газовых сетей создаются закольцованные системы на каждом объекте народного хозяйства. На случай выхода из строя газорегуляторных пунктов и газораздаточных станций устанавливаются обводные линии (байпасы). Все узлы и линии газоснабжения располагаются, как правило, под землей, так как заглубление коммуникаций значительно уменьшает их поражение ударной волной ядерного взрыва и другими последствиями ЧС. Кроме того, укрытие систем газоснабжения под землей значительно снижает возможность возникновения вторичных факторов поражения.
Для уменьшения пожарной опасности проводятся мероприятия, снижающие возможность утечки газа. На газопроводах устанавливаются автоматические запорные и переключающиеся устройства дистанционного управления, позволяющие отключать сети или переключать поток газа при разрыве труб непосредственно с диспетчерского пункта.
Инженерно-технические мероприятия по повышению устойчивости систем теплоснабжения решают путем защиты источников тепла и заглублением коммуникаций в грунт. Если на объекте предусматривается строительство котельной, ее целесообразно размещать в специальном отдельно стоящем сооружении. Здание котельной должно иметь облегченное перекрытие и легкое стеновое заполнение. При получении объектом тепла с городской теплоцентрали проводятся мероприятия по обеспечению устойчивости подводящих к объекту трубопроводов и имеющихся распределительных устройств.
Тепловая сеть строится, как правило, по кольцевой системе, трубы отопительной системы прокладываются в специальных каналах. Запорные и регулирующие приспособления размещаются в смотровых колодцах и по возможности на территории, не заваливаемой при разрушении зданий и сооружений. На тепловых сетях устанавливается запорно-регулирующая аппаратура (задвижки, вентили и др.), предназначенная для отключения поврежденных участков.
Мероприятия по повышению устойчивости системы канализации разрабатываются раздельно для ливневых, промышленных и хозяйственных (фекальных) стоков. На объекте оборудуется не менее двух выводов с подключением к городским канализационным коллекторам, а также устраиваются выводы для аварийных сбросов неочищенных вод в прилегающие к объекту овраги и другие естественные и искусственные углубления. Для сброса строят колодцы с аварийными задвижками и устанавливают их на объектовых коллекторах с интервалом 50 м по возможности на незаваливаемой территории.
На объектах помимо систем электро-, водо-, газо- и теплоснабжения имеются системы энергообеспечения технологии производства. Например, сети и сооружения для подачи сжатого воздуха, кислорода, аммиака, хлора и других жидких и газообразных реактивов. Инженерно-технические мероприятия для этих систем разрабатывают главным образом с целью предупреждения возникновения вторичных факторов поражения.
Источник