Способы повышения прочности металлов и сплавов: легирование, наклеп, термическое упрочнение.
Многие детали работают в условиях повышенного износа поверхности. Поэтому есть необходимость эту поверхность как-то защитить. Это достигается методами поверхностного упрочнения.
Упрочнить поверхность – значит повысить свойства поверхности: твердость, износостойкость, коррозионную стойкость. Если надо изменить свойства, то это значит, что должна измениться структура поверхностного слоя. Для изменения структуры можно использовать деформацию, термическую обработку с нагревом различными способами, изменение химического состава поверхности, нанесение защитных слоев. В основном методы упрочнения поверхностей можно разбить на две основные группы: 1) упрочнение изделия без изменения химического состава поверхности, но с изменением структуры. Упрочнение достигается поверхностной закалкой, поверхностным пластическим деформированием и другими методами. 2) упрочнение изделия с изменением химического состава поверхностного слоя и его структуры. Упрочнение осуществляется различными методами химико-термической обработки и нанесением защитных слоев.
Способы упрочнения деталей, материалов
Подробности Категория: Металлоемкость конструкций
Способы упрочнения деталей, материалов.
Действенным средством снижения массы является повышение прочности материалов. В отличие от способа увеличения напряжений путем снижения фактического запаса прочности, сопряженного с риском ослабления детали, надежность в данном случае не уменьшается (если сохраняется запас прочности). Другое отличие заключается в том, что этот способ применим ко всем деталям без исключения, тогда как первый способ охватывает только расчетные детали.
Основные способы упрочнения материалов следующие:
- горячая обработка давлением;
- легирование;
- упрочняющая термическая и химико-термическая обработка;
- обработка методами холодной пластической деформации.
При горячей обработке давлением упрочнение происходит в результате превращения рыхлой структуры слитка в уплотненную структуру с ориентированным направлением кристаллитов. Пустоты между кристаллитами уковываются и завариваются, прослойки примесей по стыкам кристаллитов дробятся и под действием высокой температуры и давления растворяются в металле.
Наибольшее значение для прочности имеет процесс рекристаллизации, протекающий при остывании металла в определенном интервале температур (для сталей 450—700°С). Из обломков кристаллитов, разрушенных в процессе пластической деформации, возникают новые мелкие зерна. При росте рекристаллизованных зерен примеси остаются в растворенном состоянии в кристаллитах. Для ковкого металла характерна структура, состоящая из мелких округлых зерен, хорошо связанных друг с другом, что обусловливает его повышенную прочность и вязкость.
Кованым и особенно прокатанным металлам свойственна анизотропия механических свойств в направлениях вдоль и поперек волокон.
Особенно резко влияет направление волокон на вязкость (рис. 77).
Направление волокон в кованых и штампованных деталях должно быть согласовано с конфигурацией деталей и направлением действия рабочих нагрузок. Штампованные коленчатые валы (рис. 78, б) и другие фасонные детали (рис. 78, г) с волокнами, следующими контуру, значительно прочнее деталей, изготовленных из сортового проката с перерезкой волокон (рис. 78, а, в).
Горячее накатывание зубьев шестерен (с последующим холодным калиброванием) обеспечивает правильное направление волокон относительно действующих на зуб нагрузок (рис. 78, д, e). Повышенной прочностью обладает накатанная резьба (рис. 78, ж, з).
Главное назначение легирования — повышение прочности с дифференцированным улучшением частных характеристик: вязкости, пластичности, упругости, жаропрочности, хладостойкости, сопротивления износу, коррозионной стойкости и др. Присадка некоторых элементов (Ni и особенно микроприсадка В) увеличивает прокаливаемость сталей, что позволяет получать повышенные механические свойства по всему сечению детали. Для получения высоких механических качеств легирование должно быть дополнено термообработкой.
В табл. 8 приведены сравнительные (средние) характеристики легированных и углеродистых сталей.
Упрочняющая термическая обработка (закалка с высоким, средним и низким отпуском, изотермическая закалка) вызывает образование неравновесных структур с повышенной плотностью дислокаций и сильно деформированной атомно-кристаллической решеткой (сорбит, троостит, мартенсит, бейнит). Регулируя режимы термообработки, можно получать стали с различным содержанием этих структур, размерами и формой зерен и соответственно с различными механическими свойствами. Для конструкционных сталей чаще всего применяют улучшение (закалка с высоким отпуском на сорбит), обеспечивающее наиболее благоприятное сочетание прочности, вязкости и пластичности.
Закалка с индукционным нагревом поверхностного слоя ТВЧ помимо технологических преимуществ (экономичность, высокая производительность) дает значительный упрочняющий эффект, обязанный возникновению в закаленном поверхностном слое остаточных напряжений сжатия.
Химико-термическая обработка заключается в насыщении поверхностного слоя углеродом (цементация) или азотом (азотирование) с образованием (в последнем случае) нитридов железа и легирующих элементов. При комплексных процессах (цианирование, нитроцементация) поверхность насыщается одновременно углеродом и азотом с образованием карбидов и карбонитридов. Эти виды химико-термической обработки придают поверхности высокую твердость и износостойкость. Вместе с тем они увеличивают прочность (особенно в условиях циклической нагрузки) благодаря образованию в поверхностном слое напряжений сжатия.
Разновидностью химико-термической обработки является термодиффузионное поверхностное легирование (насыщение поверхностного слоя атомами легирующих элементов), которое применяют для повышения прочности и твердости, а также придания поверхности особых свойств (табл. 9).
Процесс | Сущность процесса | Технология процесса | Назначение |
Диффузионное хромирование | Образование в поверхностном слое карбидов и α-твердых растворов Cr в железе | Выдержка в среде летучих хлоридов хрома: CrСl2; CrСl3 (газовое хромирование) при 800—1200 °С (5—6 ч) | Повышение твердости (HV 1200—1500) и термостойкости |
Титанирование | Образование в поверхностном слое α-твердых растворов Ti, карбидов титана TiC и интерметаллидов типа Fe2Ti | Выдержка при 1100—1200°С в смеси порошков ферротитана (80%) и хлористого аммония (6—8 ч) | Повышение твердости (HV 1600—2000), увеличение коррозие- и эрозиостойкости |
Бериллизания | Образование в поверхностном слое α-твердых растворов Be и бериллидов | Выдержка при 900—1100°С в смеси 20% Be, 75% BeO и 5% MgCl2 (4—8 ч) | Повышение твердости (HV 1100—1200), увеличение коррозиестойкости |
Борирование | Образование в поверхностном слое α-твердых растворов В и боридов Fe | Выдержка при 900—1100° С в смеси порошков карбида бора В4С и буры Na2B4O7 (5—6 ч) | Повышение твердости (HV 1500—1800) и термостойкости |
Сульфидирование | Образование в поверхностном слое сульфидов Fe | Выдержка в расплаве сернокислых солей при 550—600°С (2—4 ч) | Повышение износостойкости, придание противозадирных свойств, повышение стойкости против сваривания |
Силидирование | Образование в поверхностном слое α-твердых растворов Si и силицидов Fe | Выдержка в атмосфере моносилана SiH4 с газами-разбавителями при 1000° С (6—10 ч) | Повышение износостойкости, увеличение горячей коррозиестойкости |
Семенирование | Образование в поверхностном слое α-твердых растворов Se и селенидов | Обработка 20%-ным раствором селенистой кислоты H2SeO3 с добавкой небольшого количества хромпика | Повышение износостойкости, придание противозадирных свойств |
Алитирование | Отложение на поверхности кристаллической пленки Аl2О3. Образование в поверхностном слое α-твердых растворов Аl и алюминидов | Выдержка в смеси порошков ферроалюминия и Аl2O3 при 900—1000°С (6—8 ч) | Повышение горячей коррозиестойкости |
Разработаны процессы комплексного диффузионного легирования: хромалитирование (насыщение Сr и Аl), сульфоцианирование (S, С и N2), бороцианирование (В, С и N2), бороалитирование (В и Аl), хромомарганцевирование (Cr и Мn) и др.
Упрочнение стали
В целях более эффективного использования несущей способности арматуры и получения в результате этого значительной экономии стали в некоторых случаях на предприятиях ее подвергают дополнительной термической или механической обработке. В основе всех механических способов упрочнения (волочения, скручивания и вытяжки) лежит процесс механического изменения структуры стали, называемый наклепом
или
нагортовкой
, при котором происходит уменьшение пластичности и вязкости стали и повышение предела ее текучести и прочности. Процесс
волочения
состоит в протягивании проволоки или прутка через конусообразное отверстие фильера, изготавливаемого из твердых сплавов, выходная часть которого имеет меньший диаметр, чем входная. В результате одновременного растяжения и обжатия металл теряет значительную часть пластических свойств и делается более жестким. Предел текучести стали повышается в 1,5 раза. С целью уменьшения усилия, требующегося для протягивания стали через фильер, относительное обжатие площади сечения за один проход принимают в пределах 10—20%.
Волочение арматурной стали на предприятиях сборного железобетона осуществляют на одно-, двухбарабанных волочильных станах с вертикальными и горизонтальными осями типа 1/650. Для заострения концов проволоки перед заправкой ее в фильер в состав волочильных установок входят заточные станки. При диаметре обрабатываемой проволоки более 6 мм рекомендуется использовать станы с диаметром барабана 600-700 мм, при диаметре 3-6 мм — 500-600 мм, а при диаметре 1,8-3 мм — 400-500 мм.
заключается в растяжении арматурной стали, при которой в последней возникают напряжения, превосходящие предел текучести. В результате обработки сталь удлиняется на 4—8% с соответствующим уменьшением площади поперечного сечения, повышением предела текучести и снижением пластичности. Процесс упрочнения стали контролируется величиной удлинения стержня. При вытяжке горячекатаной арматурной стали периодического профиля марки Ст.5 на 5,5% предел текучести повышается с 300 МПа (3000 кг/см2) до 500 МПа (5000 кг/см2), а при удлинении стали марки 25Г2С на 3,5% этот показатель возрастает с 400 МПа (4000 кг/см2) почти до 550 МПа (5500 кг/см2). Для вытяжки создан ряд серийных установок, а также автоматизированный стан БА-55 конструкции А. И. Авакова и Г. А. Анопова.
Установки СМЖ-130 (6597С) и СМЖ-132 (6701С/2А) конструкции института «Гипростроммаш» представляют собой силовую секционную раму. Концевые секции рамы имеют упорные анкерные плиты, в которых установлены подвижная и неподвижная тяги. Для выгрузки стержней на машине имеется механизм сброса. Для замера длины вытяжки на подвижной тяге установлен указатель и линейка. Вытяжка производится гидродомкратом СМЖ-84 (6280С), который натягивает стержень с помощью подвижной тяги. Отпуск натяжения производится тем же гидродомкратом. В целях безопасности на случай обрыва стержня со стороны гидродомкрата установлен заградительный щит. В связи с применением инвентарных тяг обрыв стержня в сторону, противоположную гидродомкрату, невозможен. Соединение подвижной и неподвижной тяг со стержнем осуществляется с помощью зажимов. Установка СМЖ-132 (701С/2А) снабжена также питателем для подачи длинных стержней, который управляется гидроцилиндрами.
Установка СМЖ-130 (6597С) |
1 — насосная станция; 2 — гидроцилиндр; 3 — пульт; 4 — подвижная линейка; 5 — зажим; 6 — силовая рама; 7 — винт |
В производстве предварительно напряженных конструкций повышение прочности арматуры позволяет значительно снизить ее расход. Прочность изготавливаемой у нас стержневой арматурной стали обычно не превышает 500-900 МПа (5000-9000 кг/смм2). К тому же механическими способами существенно повысить ее расчетное сопротивление очень сложно. В этом случае наиболее целесообразным является ее термическая обработка. Как показали исследования, закалка при 900° С с последующим отпуском при 350° С повышает прочность стержней из стали марки Ст.5 в 1,5 раза, а из стали 25Г2С — в 2 раза, вследствие чего ее расход снижается не менее чем на 50%.
Создана автоматическая установка для электротермического упрочнения стали (ЭТУ-1 и ЭТУ-2), работающая следующим образом. Непрерывно подаваемые арматурные стержни поочередно на концах зажимаются в челюстных электродах, соединенных с обмоткой сварочного трансформатора типа ТСД-2000. При пропускании тока большой силы стержень разогревается до нужной температуры, выдерживается при ней необходимое время и сбрасывается в охлаждающую ванну для отпуска. Расход электроэнергии на термическую обработку 1 т стержней составляет 250-350 кВт-ч, а себестоимость — 5-6 руб. После того, как металлургическая промышленность наладит массовое производство стали с термическим упрочнением в процессе ее проката, надобность в такой обработке на заводах ЖБИ отпадает. Ведутся работы по созданию установок, на которых одновременно с термической обработкой будет производиться высадка анкерных головок на концах стержней и осуществляться электротермическое натяжение стержневой арматуры.
Источник
Методы повышения износостойкости и усталостной прочности деталей
В основе повышения износостойкости и усталостной прочности деталей лежит воздействие на рабочую поверхность деталей и элементы кристаллической решетки металла путем применения различных видов обработок.
Слесарно-механическая обработка. Эта обработка применяется для устранения задиров, рисок, наработки и других дефектов поверхности, а также для получения необходимой чистоты поверхности. Чем выше чистота поверхности, тем выше износостойкость детали. Наиболее часто для этих целей применяют шабрение, шлифование, полирование, хонингование.
Термическая обработка (закалка). Этот способ применяется для повышения твердости поверхности детали. Для уменьшения хрупкости и снятия закалочных напряжений производят отпуск. Сочетание закалки с действием магнитного поля увеличивает прочность стали, так как кристаллы мартенсита принимают одну ориентацию во всех зернах. Поверхностная закалка применяется для повышения прочности и износостойкости деталей, работающих при ударной нагрузке, при этом основной металл детали остается незакаленным. Такая закалка производится токами высокой частоты и газопламенными горелками. Поверхностная закалка в электролите основана на нагреве детали искровыми разрядами через пароводородную оболочку, возникающую у поверхности нагреваемой детали (катода). При этом не образуется закалочных трещин. Обработка холодом применяется для уменьшения количества остаточного аустенита в закаленной легированной стали, так как остаточный аустенит снижает ее твердость и износоустойчивость. При этом стабилизируются размеры деталей, что очень важно для деталей прецизионных пар.
Химико-термическая обработка. Это технологический процесс, при котором происходит изменение химического состава, структуры и свойств поверхности металла. Обработка включает в себя азотирование, фосфатирование, анодирование, цианирование, сульфидирование, борирование, цементацию.
Азотирование применяется для повышения износостойкости, твердости, коррозионной стойкости и жаропрочности деталей. Его производят в камере, заполненной газообразным аммиаком. При электрическом разряде аммиак распадается на ионы азота и водорода, которые начинают бомбардировать поверхность детали, вследствие чего азот насыщает поверхностный слой. Деталь является катодом, а анодом служат электроды. Так целесообразно обрабатывать шейки валов быстроходных дизелей.
Фосфатирование — насыщение рабочей поверхности фосфатами железа и марганца. Фосфатная пленка образуется в результате взаимодействия металла с дигидроортофосфатами железа и марганца. Она предохраняет детали от окисления при высоких температурах, поэтому необходимо фосфатировать рабочую поверхность цилиндровых втулок дизелей.
Анодирование применяется для повышения износостойкости алюминиевых деталей. Сущность процесса заключается в окислении атомарным кислородом поверхностных слоев алюминия (в сернокислой ванне под напряжением до 120 В).
Анодированию подвергают ручьи алюминиевых поршней. Для повышения антифрикционности поверхности ручьев покрываются смесью, состоящей из бакелитового лака, сульфата молибдена или графита и спирта или бензина.
Цианирование заключается в одновременном насыщении поверхности металла углеродом и азотом. Применяется оно для повышения поверхностной твердости, износостойкости и усталостной прочности.
Сульфидирование представляет собой процесс насыщения поверхностей стальных и чугунных деталей серой для повышения их износостойкости и предупреждения задиров.
Борирование — это насыщение поверхности деталей из стали и сплавов на основе никеля, кобальта и тугоплавких металлов бором для повышения твердости, теплостойкости, износостойкости и коррозионной стойкости.
Цементация заключается в насыщении поверхности детали при 900.950°С углеродом с последующей закалкой для повышения твердости, износоустойчивости и усталостной прочности.
Гальваническая обработка. Пористое хромирование рабочей поверхности производится в электролитической ванне. Вначале наносится слой хрома толщиной 0,15. 0,20 мм. Пористость создается переключением тока на обратный на 15.20 мин. Обратный ток вызывает выпадение частиц хрома с образованием мельчайших пор. Такая пористость улучшает смазку трущихся поверхностей и повышает срок службы деталей.
Механическое упрочнение. Для механического упрочнения деталей применяют накатку, простое или ультразвуковое виброобкатывание, дробеструйную и гидроструйную обработку. Накатка шеек и галтелей осуществляется роликами, которые прижимают к поверхности детали. Трехроликовое приспособление исключает деформацию детали и разгружает суппорт и ходовой винт станка. Накатка выполняется за три оборота при 12. 15 об/мин. В процессе накатки в зону контакта подается смесь масла с керосином или полимерная жидкость. Одновременно с упрочнением поверхности повышается и ее чистота.
Виброобкатывание заключается в обкатывании поверхности детали шариком, который вибрирует параллельно оси вращения детали, совершая 2600 двойных ходов в минуту при амплитуде 2 мм.
Ультразвуковое виброобкатывание получается при наложении на ролик колебаний ультразвуковой частоты, направленных перпендикулярно к обрабатываемой поверхности. В результате при весьма малых статических усилиях обкатывания получается высокая степень упрочнения, при этом в зоне контакта создается температура 1000. 1200 «С. Этот способ применяется для упрочнения закаленной стали и чугуна.
Дробеструйная обработка заключается в том, что на механически и термически обработанную поверхность с большой скоростью направляют поток стальной или чугунной дроби диаметром 0,5. 1,5 мм. Дробь выбрасывается энергией сжатого воздуха или лопатками колеса.
Гидроструйная обработка заключается в обработке деталей струей воды под давлением 0,4.0,6 МПа. Высоконапорная струя воды позволяет упрочнять поверхности сложной конфигурации.
Электромеханическое упрочнение. Данная обработка выполняется на токарно-винторезном станке. При вращении детали и перемещении инструмента с пластинкой из твердого сплава в зону контакта подводят электрический ток силой 350. 1300 А и напряжением 2. 6 В. Вместо резца можно использовать сглаживающий ролик.
В зоне контакта выделяется значительная тепловая энергия, которая мгновенно нагревает зону контакта до температуры закалки. За счет радиального усилия инструмента поверхность сглаживается, а затем быстро охлаждается за счет отвода теплоты внутрь детали. В итоге получается эффект поверхностной закалки на глубину 0,2.0,3 мм с одновременным поверхностным наклепом, значительно повышающим износоустойчивость (до 10 раз) и усталостную прочность детали (до 6 раз).
Электроискровая обработка. Упрочнение деталей этим способом основано на ударном воздействии направленного искрового разряда, вызывающего взрыв на поверхности детали в точке приложения импульса. В результате происходит перенос металла и упрочнение поверхности детали. Важную роль в повышении износостойкости и усталостной прочности деталей играют подбор пар трения и их смазки, а также применение защитных покрытий.
Подбор пар трения и их смазки. Для снижения износа трущихся поверхностей следует правильно подбирать пары трения и смазку к ним. При этом важно учитывать, что:
лучшей парой трения является пара трения бронза — сталь;
коэффициент трения сталь — хром составляет 2/3 коэффициента трения сталь — сталь;
зубчатые колеса, изготовленные из одного материала, при совместном зацеплении должны иметь разную термообработку;
применение химических присадок к смазочным маслам позволяет в несколько раз уменьшить износ, увеличить долговечность и надежность механизмов;
моющие присадки очищают поверхности деталей от отложений, что улучшает охлаждение деталей, смазку и т.д.
Защитные покрытия. Эти покрытия наносят на поверхность деталей для защиты их от коррозии, увеличения сопротивления истиранию, действию высоких температур и т.п. На тепловозах из них применяются гальванические покрытия; пропитка изоляции электрических машин лаками; окраска автоэмалью охлаждающей поверхности; пропитка охлаждающей поверхности жидким стеклом под давлением; окрашивание деталей, агрегатов и тепловоза в целом. Окраска также придает тепловозу товарный вид.
1. От чего зависит выбор способа восстановления изношенных деталей?
2. В каком случае применяют обработку развертками?
3. Каковы особенности сварки чугунных деталей?
4. Каковы особенности сварки и наплавки деталей из алюминиевого сплава?
5. Какие полимерные материалы применяются при ремонте?
6. В чем особенность газопрессовой сварки?
7. Какие существуют методы повышения износостойкости деталей?
8. Какие существуют методы повышения усталостной прочности деталей?
Источник