Способы повышения мощности дизелей. Наддув
Увеличение скорости хода современных судов требует применения мощных энергетических установок. И если для судовых паровых турбин фактор ограничения мощности не существует, то для судовых дизелей ограниченная мощность в одном агрегате является наиболее сложной проблемой.
Дизели судов небольшой и средней грузоподъемности ввиду высокого к. п. д. и малого удельного расхода топлива успешно конкурируют с другими двигателями, а для применения их на судах большой грузоподъемности необходимо увеличивать агрегатную мощность, для чего используют следующие способы:
- увеличение рабочего объема цилиндра, т. е. его геометрических размеров: диаметра цилиндра D и хода поршня S;
- увеличение частоты вращения коленчатого вала N об/мин;
- увеличение количества цилиндров i ;
- повышение среднего эффективного давления ре бар.
Каждый из этих способов имеет свои преимущества и недостатки и, главное, ограничения.
Увеличение геометрических размеров цилиндра вызывает возрастание массы подвижных деталей дизеля и, следовательно, инерционных усилий, отрицательно действующих на подшипники дизеля. Поэтому в настоящее время максимальные диаметры цилиндров судовых дизелей некоторых фирм имеют 1060 мм, а ход поршней достигает 2000 мм.
Увеличение частоты вращения коленчатого вала повышает мощность двигателя, однако отрицательно действует на другие показатели и прежде всего снижает моторесурс, увеличивает удельный расход топлива, а при очень высокой частоте вращения для поддержания высоких к. п. д. гребного винта требуется применение понижающего редуктора между дизелем и винтом. Наиболее целесообразная частота вращения коленчатого вала для тихоходных дизелей с прямой передачей крутящего момента на гребной винт — до 100 об/мин, для дизелей со средними диаметром цилиндра и ходом поршня—400—500 об/мин, для высокооборотных дизелей (в дизель-электрических передачах — 750—1000 об/мин.)
Увеличение количества цилиндров дизеля приводит к увеличению его длины и длины машинного отделения, поэтому у однорядных тихоходных дизелей i = 10 ÷ 12; у быстроходных двухрядных (V-образных) и трехрядных (W-образных) число цилиндров практически ограничено, соответственно i = 24 и i = 36. При большем i усложняется конструкция дизеля и его эксплуатация.
Наиболее перспективным направлением для роста агрегатной мощности судовых дизелей является повышение его среднего эффективного давления ре за счет применения наддува.
Наддувом называется принудительное заполнение рабочего объема цилиндра воздухом повышенного давления, что увеличивает массу заряда воздуха, позволяет повысить также массу заряда топлива с сохранением оптимального коэффициента избытка воздуха α.
Наддув дизеля может осуществляться с применением механического нагнетателя воздуха с приводом от коленчатого вала; такой наддув называется механическим. Прирост мощности при механическом наддуве достигает 30%. Однако если учесть, что примерно половина этой мощности расходуется на привод нагнетателя, а механический к. п. д. ухудшается из-за увеличения числа трущихся узлов дизеля, то такой наддув является малоэффективным и на новых дизелях не применяется.
Наиболее эффективен газотурбинный наддув. Суть его заключается в следующем: от выхлопных газов двигателя, имеющих значительную температуру и давление, приводится в действие специальная газовая турбина, на общем валу с которой находится центробежный нагнетатель воздуха (рис. 88, а). Нагнетатель забирает воздух из машинного отделения, сжимает его и направляет в ресивер дизеля. Газотурбинный наддув в чистом виде применяется только у четырехтактных дизелей и позволяет увеличить мощность дизеля до 100% при давлении наддувочного воздуха до 2 бар.
У четырехтактных дизелей при пуске, когда газовая турбина не работает, пополнение цилиндра зарядом свежего воздуха происходит за счет разности давлений при движении поршня вниз во время пуска.
Обязательным условием работы двухтактного дизеля является наличие в ресивере воздуха повышенного давления. Если учесть, что газовая турбина начинает работать только тогда, когда дизель разовьет частоту вращения до 25% номинальной, то для его пуска необходимо иметь специальное устройство. Таким устройством может быть электронагнетатель периодического действия. Электронагнетатели не получили большого распространения, так как они усложняют конструкцию дизеля, требуют установки специальных заслонок и т. д.
На двухтактных дизелях параллельно и последовательно с газотурбинными нагнетателями устанавливают различные механические устройства, которые облегчают пуск дизеля и позволяют получать более высокие давления наддувочного воздуха. Такой метод наддува называется комбинированным. В качестве дополнительных механических нагнетателей при газотурбинном наддуве могут применяться индивидуальные (для каждого цилиндра) или общие (для всех цилиндров) поршневые продувочные насосы или объемные (ротативные) нагнетатели. В последнее время многие фирмы («Бурмейстер и Вайн», МАН) используют для дополнительного сжатия воздуха и для получения продувочного воздуха при пуске дизеля подпоршневые пространства рабочих цилиндров. Двигатели некоторых фирм в дополнение к газотурбинному наддуву имеют механические нагнетатели и рабочие подпоршневые полости цилиндров. Причем как подпоршневые пространства, так и механические продувочные насосы могут работать параллельно или последовательно относительно друг друга или относительно газотурбонагнетателей. При этом, для увеличения массы заряда в единице объема и, следовательно, повышения эффекта наддува, применяют промежуточные холодильники наддувочного воздуха. Выпускные газы, выходящие из цилиндра дизеля по изолированному трубопроводу, попадают в сопловой аппарат газовой турбины, где внутреняя энергия преобразуется в кинетическую, а оттуда на лопатки газовой турбины, ротор которой находится на одном валу с центробежным нагнетателем. Воздух из машинного отделения забирается нагнетателем и направляется через промежуточный холодильник в цилиндр дизеля.
Если выхлопные газы попадают в общий сборник-коллектор, а затем в сопловой аппарат турбины, такая турбина называется турбиной постоянного давления. У многих четырехтактных и некоторых двухтактных дизелей выхлопные газы направляют по индивидуальным или общим газопроводам (группируя несколько цилиндров) и подают на лопатки газовой турбины в виде импульсов; такая турбина называется импульсной газовой турбиной, а наддув—импульсным. На рис. 88, б показана группировка газопроводов четырехтактного шестицилиндрового дизеля с порядком работы цилиндров 1-3-5-6-4-2; группы цилиндров 1, 4, 5 (А) и 2, 3, 6 (Б) не имеют одновременного выпуска газов, и, следовательно, газы попадают из отдельных цилиндров на лопатки газовой турбины в виде импульсов. При ином числе и порядке работы цилиндров требуется другая группировка цилиндров.
При наддуве у четырехтактных дизелей значительно изменяются фазы газораспределения: их подбирают таким образом, чтобы время наполнения цилиндра по углу поворота мотыля коленчатого вала значительно увеличивалось. Если, например, открытие впускного клапана у четырехтактных дизелей без наддува происходит за 15—30° до в. м. т., а закрытие — через 10—30° после н. м. т., то у дизелей с наддувом открытие происходит за 40—80° до в. м. т., а закрытие — через 20—40° н. м. т. Значительно раньше открывается, а позже закрывается (относительно мертвых точек) и выпускной клапан: из цилиндра необходимо за короткое время выпустить значительно большее количество газов, чем у дизелей без наддува. Для лучшей продувки цилиндра и охлаждения камеры сгорания увеличивают и время перекрытия клапанов.
Схема газотурбинного наддува двухтактного двигателя с прямоточно-клапанной продувкой и с электронагнетателем, который используется при пуске, а также в качестве аварийного, показана на рис. 89, а. Во время работы дизеля отработавшие газы дизеля из цилиндров по индивидуальным патрубкам попадают на лопатки импульсной газовой турбины; продувочный воздух через промежуточный холодильник попадает в подпоршневое пространство цилиндров, которое работает последовательно с газотурбонагнетателем, затем проходит для продувки и заполнения цилиндра. Такой тип наддува применяется на двигателях фирмы «Бурмейстер и Вайн». На последних моделях дизелей этой фирмы и ее лицензиатов (в том числе и БМЗ) не ставят электронагнетатели Э. Н., так как продувка цилиндров при пуске дизеля и при выходе из строя газотурбонагнетателей обеспечивается подпоршневыми полостями цилиндров.
У двигателей «Гетаверкен» с прямоточно-клапанной продувкой вместо подпоршневых пространств используются индивидуальные для каждого цилиндра продувочные насосы (см. рис. 89, б). Такие насосы имеют и некоторые дизели с контурной продувкой («Фиат»).
Фирма МАН наряду с устройством газотурбонагнетателей и использованием подпоршневых пространств цилиндров на некоторых типах дизелей устанавливает поршневые продувочные насосы, которые могут работать последовательно с подпоршневыми пространствами всех или нескольких цилиндров и параллельно с газотурбонагнетателями.
Источник
Дизельный двигатель, пути повышения мощности
Первый более мене реальный двигатель внутреннего сгорания ДВС появился 1860, представил его J.J.E. Lenoir (кто изучал теорию ДВС помнят циклы Lenoir). В течение следующего десятилетия было их произведено несколько сотен. Мощность, которую они выдавали, составляла шесть л/с и его эффективность достигала 5%. 1867 году появился на свет Otto-Langen двигатель с эффективностью около 11%. Их было произведено уже несколько тысяч. Вообще Nicolaus A. Otto и Eugen Langen были в то время одними из главных изобретателей ДВС. Да их работы и посей день актуальны (так же вспоминаете Отто цикл).
Двигатели внутреннего сгорания бывают 2-х типов :
— compression ignition engine (Дизельный двигатель) – возгорания происходит за счет нагрева смеси из-за сжатия.
— Spark Ignition (Отто, Gas engine или бензиновый двигатель) – возгорание происходит с помощью свечи зажигания.
В 1880 году ДВС был в первые установлен именно на автомобиль. А в 1892 году Рудольф Дизель усовершенствовал свой двигатель, до состояния, как он в принципе выглядит и в настоящие дни. Это уже был compression ignition engine. Первые его эксперименты были с использованием твердых сортов топлива. Первые compression ignition engine были очень большие, шумные, медленные, одна цилиндровые, но при этом они были в те времена более эффективные чем — Spark Ignition. Развитие продолжалось и только в 1929 году, был сделан много цилиндровый, не больших размеров дизельный двигатель (не очень мне нравится это название, но это более коротко в написании) и установлен на автомобиль.
Конечно, дизельные двигатели бывают как 2, так и 4 тактные.
Процесс подачи топлива может быть:
1. prechamper process
Преимущества:
— Низкий уровень шума, когда двигатель прогрет
— Меньше нагрузка на двигатель
Недостатки:
— Шумный, когда холодный
— повышенный расход топлива
2. Direct-injection process (непосредственный впрыск)
Преимущества:
— Более экономичный
— Лучше холодный старт
— Это процесс будущего
Недостатки:
— Выше уровень шума
— Более высокая нагрузка на двигатель если подача топлива осуществляется не совсем точно (Неточности настройки и т.д. ).
Теперь не много о компрессии. Компрессия:
– или давление в камере сгорания в дизельном двигателе зависит от следующих факторов:
— Обороты двигателя
— Распредвалов
— Поступающий воздух
— Температура поступающего воздуха
— и т.д.
Примерно вот так выглядит конечная компрессия (давление в камере сгорания) и изменения температура при сжатии, как функция оборотов двигателя. Или просто – чем выше обороты, тем выше компрессия и температура.
Воздух, нагретый на такте сжатия (compression stroke) должен зажечь, воспламенить поступающее топливо. Необходимая температура воспламенения для дизельного топлива примерно 220 градусов. Это тот минимум, который необходим для работы дизельного двигателя. На высоких оборотах температура воздуха может без проблем достигать 700 градусов. Чем меньше скорость двигателя или обороты двигателя, тем меньше конечная компрессия и соответственно меньше конечная температура при сжатии (постарайтесь этот простой принцип просто запомнить, он будет важен, когда я буду описывать методы повышения мощности).
Холодный старт
Как Вы уже знаете, минимальная температура воздуха на такте сжатия должна быть 220 градусом, чтобы начался процесс само воспаления смеси. Поэтому при низкой температуре и низких оборотах мы должны впрыснуть топливо близко к пику давления в камере сгорания.
Температура сжатия воздуха для холодного старта, как функция угла коленчатого вала
Типы подачи топлива в дизельных двигателях
Я не буду расписывать все типы, виды их различия т.к. идея данного поста (конечная – как повысить мощность).
Не много о in line fuel injection pump
Такой тип используется на грузовиках Мерседес, МАН и т.д. На легковых машинах 240 300D Mercedes, C250D/C250TD Mercedes и т.д.
Наверное, так же стоит не много рассказать о современном — Common-Rail fuel injection system
Bosh “Common Rail” система подачи топлива в direct injection (прямой, непосредственный впрыск) дизельных двигателях – это невероятно высокая гибкость в адаптации системны впрыска. Используется не только на пассажирских автомобилях, но и на тяжелых грузовиках. Высокое давление впрыска – до 1400 Бар. Вариабельный старт впрыска. Вспомогательный, основной и дополнительный впрыск ( pilot injection, mian injection and post injection) Изменение, установление давления подачи топлива в зависимости от ситуации (operating mod) и т.д.
Такие системы конечно без ЭБУ уже не обойдутся. Как минимум для правильной работы необходимы данные с датчика положения коленвала, датчика положения распредвала, датчика положения педали газа, датчика давления, датчика давления топлива (pressure sesnsor), температура ОЖ, датчик массы воздуха. На последних моделях я уже встречал и датчик ЕГТ (температуры выхлопных газов).
И опять видео анимация
Турбодизель
Большинство современных дизельных двигателей оснащены различными турбинами, компрессорами. Немного о турбинах:
— Non wastegate turbo. Такие турбины не могут раскрутиться более чем 100 000 оборотов. Имеют более узкий диапазон работы. Но могут быть очень эффективные, если правильно подобраны. В основном используются на грузовиках.
— Турбины с вестгейтом используются для уменьшения лага на малых оборотах и чтобы не был овербуст (контролируют максимально допустимое давление) на высоких оборотах двигателя
— VNT Turbo или просто вариабельные турбины имеют широкий диапазон . наверное это будущее для дизельных двигателей
Турбина Porsche 911 Turbo.
Теперь поговорим о принципах повышения мощности на дизельных моторах. А это очень просто, правда, необходимо только увеличить подачу топлива и все, мощность растет со страшной силой. Но это только одна сторона медали. Если кто занимался настройкой бензиновых турбо моторов, то знают, как легко его положить. Так вот, при настройке дизельного мотора, это еще проще сделать (убить мотор). Моя рекомендация – если у Вас нет опыта, знаний – доверьте эту процедуру профессионалу. А я в этом посте расскажу принципы, которые помогут Вам в этой проблеме.
Для понимания я приведу различия в настройке между — compression ignition engine и Spark Ignition. Почему я использую именно эту формулировку, а не дизельный и бензиновый двигатели. Да все очень просто, и Spark Ignition двигатель работает не только на бензине, это может быть и газ, этанол, метанол да еще куча разных углеводородов, это же относится и к — compression ignition engine, он работает не только на дизеле. Но вот процессы не зависят от вида топлива, только от вида, типа ДВС (и пожалуйста, не надо указывать какие еще бывают двигатели, речь, пост не об этом.
В бензиновых ДВС наша основная задача для повышения мощности, это увеличить подачу кислорода в камеру сгорания. Для борьбы с повышением температуры в камере сгорания, ЕГТ с детонацией, (возгорания топлива на такте сжатия без помощи свечи зажигания. Мы богатим топливо воздушную смесь. Короче чем богаче смесь, тем сильнее мы охлаждаем камеру сгорания, поршня и т.д.
В дизельном моторе – чем больше мы подадим топлива, тем выше будет температура в КС. Это одно из основных отличий.
Далее, вспоминаете выше я просил Вас запомнить, что температура воздуха в конце такта сжатия в дизельном моторе повышается с повышением оборотов. Это очень важно.
Дизельные моторы работают по сравнению с бензиновыми на очень бедных смесях. Если скажем бензиновый мотор 14.7 при малых нагрузках и 12.5 для максимальной мощности, то дизельный двигатель 15.0 на малых оборотах (1000 об/мин) и 24-28.0 на 4000-4500 об/мин (сток настройки).
Теперь Вы понимаете, почему с увеличением оборотов необходимо беднить смесь. Если мы, оставим такую же АФР 15.0, как на низких оборотах, так и на высоких, у нас просто из-за сильно возросшей температуры в КС взорвется мотор.
Так что же делать. Да все просто, в этом нам поможет буст (надув). Само по себе поднятие избыточного давления только уменьшит мощность т.к. смесь станет беднее. Но вот, то, что АФР (топливо воздушная смесь) станет беднее, дает нам возможность увеличить подачу топлива и как следствие увеличение мощности.
Теперь ясно, что для увеличения мощности в дизельном моторе необходимо увеличить подачу топлива и направить все усилия, применить всевозможные способы, которые нам доступны для понижения температуры в КС. Давайте опустим моменты связанные с модернизацией системы подачи топлива, как это сделать т.к. этих систем в дизельных моторах много, следовательно, и методы, способы разные. Остановимся на принципах.
Повышение надува на 10% на сток машине, скажем для примера на VW TDI 2.0 170 сил в стоке по паспорту до 1.7 бара (избытка, не абсолютного давления) это безопасно. Мощность перед настройкой была 182 силы (это нормально для VAG машин, они часто занижают мощность). После настройки 205 сил.
Это только настройка. Что еще можно сделать? Конечно если мы говорим о серьезном тюнинге то конечно, не говоря о замене турбины, усовершенствовании системы подачи топлива, системы охлаждения двигателя (радиатор, помпа) для борьбы с температурой в КС можно использовать такие же методы которые используются в бензиновых двигателях для борьбы с детонацией :
— более производительный интеркулер
— Установка системы впрыска вода/метанол (об этой системе уже есть несколько статей)
— усовершенствование системы выпуска
— модернизация системы впуска
— подбор турбины с максимальной эффективностью под планируемую мощность.
Но самое главное – это настройка. Если при настройке бензинового двигателя в качестве индикаторов мы используем датчик детонации, АФР, ЕГТ (температура выхлопных газов) и следим онлайн за изменения мощности (реальной под нагрузкой), то для дизеля ЕГТ и АФР. Более того, когда вы настраиваете, то значения ЕГТ должны учитываться только после, как минимум 20 секундном удержании мотора под полной нагрузкой на различных оборотах. Я слышал, что некоторые настройщики добавляют смесь до той поры, пока не пойдет черный дым, а потом не много убирают – это не правильно. Если Вы настроите мотор и при этом измерения ЕГТ были произведены только при краткосрочной нагрузке, то это не факт, что температура не будет повышаться при более длительной езде при полной нагрузке. А если температура будет превышать предельные значения, то это вопрос времени что у Вас первое выйдет из строя двигатель или турбина.
В следующей статье речь пойдет о видах чип боксов (power box for diesel), что важно именно для настройки и расскажу Вам наш фирменный трюк, как мы делаем без модернизаций, на сток машинах еще плюс 10-20% мощности и это БЕЗОПАСНО.
Более подробно об увеличении мощности поговорим в следующей статье. Увеличение мощности дизельного двигателя, топливные карты
Источник