Способы повышения к.п.д. паросиловых установок
К. п. д. цикла Ренкина даже в установках с высокими параметрами пара не превышает 50%. В реальных установках из-за наличия внутренних потерь в турбине значение к. п. д. еще меньше.
На величины энтальпий, входящих в выражение (9) оказывают влияние три параметра рабочего тела –– начальное давление р1 и начальная температура Т1 перегретого пара на входе в турбину и конечное давление р2 на выходе из турбины. Это приводит к увеличению теплоперепада и как следствие этого, к увеличению удельной работы и к. п. д. цикла.
Кроме изменения параметров пара повысить экономичность паросиловых установок можно за счет усложнения схем самой установки.
На основании выше сказанного выявляются следующие пути повышения термического к. п. д.
1. Повышение начального давления р1 при неизменных параметрах Т1 и р2 (рис. 15, а). На диаграмме показаны циклы Ренкина при максимальных давлениях р1 и р1а > р1. Сопоставление этих циклов показывает, что с увеличением давления до р1а теплопререпад
имеет большее значение, чем
, а количество подводимой теплоты
уменьшается. Такое изменение энергетических составляющих цикла с ростом давления р1 увеличивает термический к. п. д. Этот метод дает значительное повышение эффективности цикла, но в результате повышения р1 (давление в паросиловых установках может достигать до 30 ата) увеличивается влажность пара, выходящего из турбины, что вызывает преждевременную коррозию лопаток турбины.
2. Увеличение начальной температуры Т1 при неизменных параметрах р1 и р2 (рис. 15, б). Сопоставляя циклы в диаграмме при температурах Т1 и Т1а > Т1 можно увидеть, что разность энтальпий
увеличивается в большей степени чем разность
, так как изобара
протекает более круто, чем изобара
. При таком изменении разности энтальпий с ростом максимальной температуры цикла термический к. п. д. возрастает. Недостатком этого метода является то, что для пароперегревателя требуется жаропрочный металл, температура перегретого пара может достигать до 650 °С.
3. Одновременное повышение давления р1 и температуры Т1 при постоянном давлении р2. Повышение как р1 так и Т1 увеличивает термический к. п. д. Влияние их на влажность пара в конце расширения противоположно, с повышением р1 она возрастает, а с увеличением Т1 –– уменьшается. В конечном итоге состояние пара будет определяться степенью изменения величин р1 и Т1.
4. Понижение давление р2 при постоянных параметрах Т1 и р1 (рис. 15, в). С понижением р2 увеличивается степень расширения пара в турбине и техническая работа возрастает ∆l = la – l. При этом количество отводимой теплоты меньше, чем
(изобара при меньшем давлении более пологая), а количество подводимой теплоты возрастает на величину
. В результате термический к. п. д. цикла увеличивается. Понижая давление р2 можно достигнуть на выходе из конденсатора температуры равной температуре окружающей среды, но при этом в конденсационном устройстве придется создавать вакуум, так как температуре
соответствует давление р2 = 0,04 ата.
5. Использование вторичного (промежуточного) перегрева пара (рис. 15, г). На диаграмме прямая 1–2 показывает расширение пара до некоторого давления р1а в первом цилиндре двигателя, линия 2–1а –– вторичный перегрев пара при давлении р1а и прямая 1а–2а –– адиабатное расширение пара во втором цилиндре до конечного давления р2.
Термический к. п. д. такого цикла определяется по выражению
.
Применение вторичного перегрева пара приводит к снижению влажности пара на выходе из турбины и к некоторому увеличению технической работы. Повышение к.п.д. в этом цикле незначительное, всего 2–3 %, и такая схема требует усложнения конструкции паровой турбины.
6. Применение регенеративного цикла. В регенеративном цикле питательная вода после насоса протекает через один или несколько регенераторов, где нагревается паром, частично отбираемым после расширения его в некоторых ступенях турбины (рис. 16).
Рис. 15. Пути повышения термического к.п.д. цикла Ренкина
Рис. 16. Схема паросиловой установки, работающей
по регенеративному циклу:
1 –– котел; 2 –– пароперегреватель; 3 –– паровая турбина; 4 –– электрогенератор; 5 –– охладитель-конденсатор; 6 –– насос; 7 –– регенератор; α –– доля отбора пара
Количество отобранного пара будет определяться из уравнения теплового баланса для регенератора
,
где –– энтальпия конденсата при конечном давлении пара р2;
–– энтальпия пара, отбираемого из турбины;
–– энтальпия конденсата при давлении отбора пара.
Полезная работа 1 кг пара в турбине будет определяться по формуле:
.
Количество теплоты затраченной на 1 кг пара, составляет
.
Тогда термический к.п.д. в регенеративном цикле будет найден
.
Подробное исследование регенеративного цикла показывает, что его термический к.п.д. всегда больше термического к.п.д. цикла Ренкина с теми же начальными и конечными параметрами. Увеличение к.п.д. при использовании регенерации составляет 10–15 % и возрастает с увеличением количеств отбора пара.
7. Применение теплофикационного цикла. В теплофикационном цикле утилизируется теплота, отдаваемая паром охлаждающей воде, которая обычно используется в отопительных системах, в системах горячего водоснабжения и для других целей. При этом теплота q1, подводимая к рабочему телу, может в разной степени перераспределяться дл получения технической работы и теплоснабжения. В теплофикационном цикле (рис. 17) часть электроэнергии недорабатывается, так как часть теплоты пара отбираемого из турбины расходуется у потребителя.
Рис. 17. Схема паросиловой установки, работающей по
1 –– котел; 2 –– пароперегреватель; 3 –– паровая турбина; 4 –– электрогенератор; 5 –– охладитель-конденсатор; 6 –– насос; 7 –– потребитель теплоты
Количество теплоты, полученное рабочим телом, частично превращается в полезную работу лопаток турбины
, а частично затрачивается для целей теплоснабжения у потребителей
. Поскольку и та и другая работы являются полезными, то термический к. п. д. теряет свой смысл.
К.п.д. теплофикационного цикла будет определяться
.
Так как в теплофикационном цикле вырабатывается два вида продукции (электроэнергия и теплота), то приходится различать внутренний КПД по выработке теплоты и средневзвешенный КПД по выработке электроэнергии и теплоты. Каждый из них равен единице, поскольку в пределах цикла потерь нет.
В реальности к.п.д. теплофикационного цикла не может быть равен единице, так как всегда существуют механические потери в турбине и гидравлические потери в системах теплоснабжения.
Источник
Способ увеличения коэффициента полезного действия паротурбинной установки
Использование: в энергетике и может быть использовано в паротурбинных установках тепловых и атомных электростанций. Сущность изобретения: для уменьшения тепла в конденсаторе турбины отработавший пар подают в одну либо несколько вихревых труб, где он делится на два потока — холодный и горячий. Холодный поток, скондесировавшийся внутри вихревой трубы, сливают в конденсатосборник. Горячий поток отводят в теплообменник системы регенерации турбины, где его конденсируют и сливают в конденсатосборник. 1 ил.
Изобретение относится к энергетике, в частности к устройствам конденсации пара в паротурбинных установках.
Целью изобретения является увеличение коэффициента полезного действия (КПД) паротурбинной установки за счет уменьшения потерь тепла отработавшего пара, уносимого охлаждающей водой в конденсаторе турбины.
На работающих в настоящее время по циклу Ренкина паротурбинных установках тепловых и атомных электростанций обязательным элементом является конденсатор турбины, в котором происходит конденсация отработавшего пара. Конденсатор представляет собой регенеративный теплообменник поверхностного типа, в котором нагреваемым элементом является циркулярная вода. Она забирает тепло отработавшего пара в количестве, необходимом для конденсации последнего, и отдает это тепло окружающей среде либо в градирнях, либо в прудах — охладителях. Таким образом, налицо потери тепла паротурбинных установок с охлаждающей водой. Эти потери достигают 45 o C50% [1] Известен способ конденсации пара в регенеративных поверхностных конденсаторах при использовании в качестве охлаждающего тепла атмосферного воздуха, осуществляемый при наличии достаточного перепада температур наружного воздуха и пара [2] При этом способе воздухе, нагреваясь от отработавшего пара, аккумулирует тепло в специальных тепловых аккумуляторах, из которых тепло в нужный момент возвращается обратно в цикл паротурбинной установки. Указанный способ хотя и уменьшает потери тепла в окружающую среду, однако лишь при наличии перепада температур между паром, а также используется лишь часть трубных пучков конденсатора.
От перечисленных недостатков частично свободен другой способ, заключающийся в том, что через часть трубного пучка конденсатора турбины проходит холодный природный газ, который нагревается и подается в топку парового котла [3] По этому способу природный газ сначала разделяется в вихревой трубе на горячий и холодный потоки. Горячий газ подается прямо в топку котла, а холодный сначала нагревается в конденсаторе турбины, и только после этого подается в котел.
Но данный способ тоже имеет свои недостатки, т.к. его можно использовать при наличии газомазутных котлов, а также тепло, отбираемое газом у отработавшего в турбине водяного пара, недостаточно для полной конденсации последнего. Поэтому в конденсаторе турбины для нагрева газа используется лишь часть трубного пучка, а через остальные трубки протекает циркуляционная вода.
Сущность изобретения заключается в следующем. Поток отработавшего в турбине пара последних ступеней цилиндра низкого давления подают в вихревую трубу, где он приобретает вихревое (винтовое) движение. В результате этого движения возникает эффект Ранка и поток пара разделяется на два потока холодный и горячий. При своем движении внутри вихревой трубы холодный поток пара конденсируется и полученный конденсат сливают в конденсатосборник. Горячий поток подают в теплообменник системы регенерации турбины, где он отдает свое тепло основному конденсату после конденсатных наносов, кондесируется и смешивается с основным конденсатом.
При больших перепадах разряжений между паром в выхлопном патрубке турбины и кондесатосборнике возможно применение нескольких вихревых труб, включенных последовательно. Тогда холодный поток пара, выходящий из первой вихревой трубы, подают на вход следующей трубы. Полная конденсация происходит в последней вихревой трубе данного каскада последовательно включенных труб.
В случае большого расхода отработавшего в турбине пара возможна установка нескольких параллельных каскадов последовательно включенных вихревых труб.
Данный способ может быть реализован в устройстве, схема которого показана на чертеже.
Отработавший в турбине пар поступает в выхлопной патрубок турбины 1, откуда по вводным трубам 2 его подают к соплам 3, установленным тангенциально в вихревой трубе 4. В этой трубе поток пара приобретает винтовое движение, в результате которого происходит перераспределение температур по ширине потока. Более холодные слои находятся ближе к центру трубы, а более горячие ближе к стенке. Двигаясь по спирали, поток пара удаляется в длительный конус 5, и в результате этого горячий поток проходит в фиксированный зазор между корпусом трубы и по паропроводу 6 его подают в поверхностный теплообменник регенерации турбины. Холодные слои парового потока после удара о конус двигаются вдоль центра трубы в обратном направлении, конденсируются при своем движении, и полученный конденсат через трубопровод 7 сливают в расширитель 8. В расширителе конденсат за счет эффекта Джоуля-Томпсона дополнительно переохлаждается и попадает в конденсатосборник 9, откуда подается на всас конденсатных насосов. В расширитель, кроме того, через трубу 10 заведен слив конденсата горячего потока пара теплообменника регенерации турбины и прочие необходимые потоки. Удаление газов и воздуха от присосов происходит через трубу 11 с помощью эжекторов. Конденсат и конденсатосборник отделен от отработавшего в турбине пара с помощью непроницаемой перегородки 12.
Предлагаемый способ позволит увеличить КПД паротурбинной установки, т.е. увеличить мощность турбины при уменьшении количества сжигаемого в котле топлива, увеличить надежность работы паровой турбины, т.к. исключается возможность аварийного останова турбины из-за срыва вакуума в конденсаторе в результате отключения циркуляционных насосов; улучшить качество питательной воды, т.к. исключается возможность попадания самой воды в линию основного конденсата турбины в результате разрыва конденсационных трубок; уменьшить трудоемкость обслуживания паротурбинных установок и, кроме того, применение данного способа позволит уменьшить тепловое загрязнение окружающей среды, т. к. практически все тепло пара будет использоваться в цикле паротурбинной установки.
Способ увеличения КПД паротурбинной установки путем использования тепла отработавшего в турбине пара, отличающийся тем, что поток отработавшего в турбине пара подают в одну либо несколько вихревых труб, где разделяют на холодный и горячий потоки, первый из которых, сконденсировавшийся в вихревой трубе, сливают в конденсатосборник, а последний отводят в теплообменник регенерации турбины, где его конденсируют и сливают в конденсатосборник.
Источник