Способы повышения эффективности ПТУ
5.1 Способы увеличения термического КПД.
Термический КПД цикла увеличивается с увеличением давления
и температуры t1 пара перед турбиной и с уменьшением давления в конденсаторе. В настоящее время материалы, применяемые в пароперегревателях и турбинах, выдерживают температуры не более 535 – 565 о С; при этом давление на входе в турбину может быть и выше критического, т.е.>22 МПа.
Понижение давления в конденсаторе также имеет свои пределы, связанные с ограничением температуры влажного насыщенного пара в конденсаторе в диапазоне 25–35 о С. Этот диапазон температур соответствует абсолютному давлению пара в конденсаторе (например, при
). Дальнейшее снижение давления в конденсаторе
невозможно из-за отсутствия естественных (природных) охладителей с более низкой температурой.
5.2. Промежуточный перегрев пара.
Этот способ применяется при больших давлениях (часто больше Ркр). Если рас-ширять пар от этого большого давления до давления в конденсаторе р2=3-5 кПа, то степень сухости пара будет х2 0 С.
5.3. Регенеративный подогрев.
В этом случае из турбины из средних или последних ступеней отбирается часть пара для подогрева питательной воды после насоса. Может быть до 10 таких регенеративных подогревов.
За счет изложенных в п.п. 5.2, 5.3 мероприятий эффективный КПД ПТУ может быть увеличен с 28-30 % до 38-40%.
5.4. Теплофикационный цикл.
Паротурбинные установки, в которых вырабатывается только электроэнергия, называются конденсационными. В конденсаторе этих установок давление равно 3-5 кПа и температура — 25-35 0 С, а охлаждающая вода нагревается до 15-30 0 С. Теплота этой воды не может быть использована из-за низкой температуры. Потери с охлаждающей водой составляют в конденсационных установках до 60% теплоты, выделившейся при сгорании топлива. Чтобы использовать теплоту, уносимую с охлаждающей водой, пар в турбине расширяют до более высокого давления, равного 1-1,3 бар и соответственно более высокой температуры – 100-110 0 С; при этом температура охлаждающей воды составляет 80-95 0 С. Теперь эту теплоту охлаждающей воды можно использовать для отопления зданий, в технологических процессах и т.п.
Установки, в которых осуществляется комбинированная выработка электрической энергии и теплоты, называются теплофикационными установками или теплоэлектроцентралями (ТЭЦ).
Повышение противодавления пара (т.е. давления на выходе из турбины) приводит к уменьшению вырабатываемой электрической энергии, но общее использование теплоты значительно повышается. В идеале можно использовать всю теплоту q2, но в действительных условиях часть теплоты теряется, и экономичность теплофикационных установок достигает 70-75%. Комбинированная выработка электрической и тепловой энергии является основой теплофикации.
Источник
Способы повышения эффективности ПТУ
Паровой цикл Карно
Наиболее эффективным циклом теплового двигателя сточки зрения термодинамики является цикл Карно, состоящий из двух адиабатных процессов сжатия и расширения и двух изотермических процессов подвода и отвода теплоты.
Пар приготовляется в котле (КТ) путем подвода теплоты сгорания топлива к жидкости (воде) в процессе 4-1 при постоянных давлении и температуре (парообразование или кипение в котле); сухой насыщенный пар поступает на турбину (ПТ), где совершает работу в адиабатном процессе 1-2 расширения пара; турбина соединена с электрогенератором (ЭГ); отработавший пар попадает в конденсатор (КН), где отдает теплоту (процесс конденсации пара 2-3) охлаждающей среде (воде или воздуху); затем компрессором (КМ) сжатый конденсат возвращается в котел (адиабатное сжатие 3-4).
Состояние 4 – кипящая вода, состояние 1 – сухой насыщенный пар, состояние 2 и 3 – пар со степенью сухости х2 и х3 соответственно.
Термический КПД цикла Карно на водяном паре равен (формула)
ПТУ, работающие по циклу Карно, практически невыгодны, так как:
— увеличение КПД путем завышения температуры пара Т1 в процессе подвода теплоты ограничено температурой критической точки ТК=647,3 К;
— температура холодного источника Т2 ограничена снизу температурой окружающей среды;
— т.к. конденсация пара в процессе 2-3 осуществляется не полностью, то объем цилиндра компрессора должен быть весьма значителен, а это затраты на металл; размеры цилиндра компрессора возрастают с увеличением давления пара в котле и с уменьшением давления в конденсаторе, т.е. при переходе к более выгодным температурным режимам; работа парового цикла (пл. 1-2-3-4) и работа на привод компрессора (пл. р1-3-4-р2) соизмеримы;
— турбина работает на влажном паре, вследствие эрозии ее лопатки быстро изнашиваются;
— последнее (большая влажность пара) также относится и к работе компрессора.
Таким образом, для водяного пара цикл Карно сохраняет лишь теоретическое значение эталонного цикла.
Цикл Ренкина
Цикл Ренкина, цикл ПТУ, в котором пар после турбины полностью конденсируется (до жидкого состояния), а полученный конденсат адиабатно сжимается в насосе до давления в котле. В цикле возможен перегрев пара. Принципиальная схема и цикл с перегревом пара представлены на рисунке.
В паровом котле К происходит изобарный процесс подогрева воды до температуры кипения 4-5 и парообразование 5-6. Пар поступает в пароперегреватель ПП, где изобарно перегревается 6-1. Перегретый пар адиабатно расширяется в турбине Т, процесс 1-2, в результате кинетическая энергия пара преобразуется в механическую работу вращения вала турбины и связанного с ней генератора Г. Затем пар поступает в конденсатор КН, где за счет охлаждающей воды изобарно конденсируется, процесс 2-3. Конденсат адиабатно сжимается в насосе Н, процесс 3-4, и поступает в котел.
Таким образом, подвод теплоты в цикле Ренкина происходит изобарно в процессе 4-5-6-1: q1 = h1 – h4.
Отвод теплоты происходит изобарно в процессе 2-3: q2 = h2 – h3.
Работа (располагаемая) получатся в турбине в адиабатном процессе 1-2: lT = h1 – h2.
Работа затрачивается в насосе в адиабатном процессе 3-4: lН = h4 – h3.
Полезная работа, получаемая в цикле: lПТУ = lT – lН = q1 – q2.
Термический КПД цикла:
Поскольку работа, затраченная в насосе гораздо меньше работы произведенной турбиной, то для прикидочных расчетов величиной lН можно пренебречь. Величина термического КПД зависит от параметров пара на входе и выходе из турбины. КПД увеличивается если: увеличивается начальное давление р1 и температура t1, а также уменьшается конечное давление р2. Цикл Ренкина является основным циклом ПТУ.
Рассмотрим цикл Ренкина на насыщенном паре.
Схема установки отличается от предыдущей схемы тем, что в данном случае будет отсутствовать перегреватель. Поэтому на турбину будет поступать насыщенный пар. На рис.7.2,а изображен цикл Ренкина в TS- диаграмме.
3-1 – подвод теплоты от источника в воде q1, состоит из двух процессов:
3-3/ — кипение воды в котле;
3/-1 – испарение воды в пар при постоянном давлении;
1-2 – в турбине пар расширяется адиабатически;
2-2/ — пар конденсируется и отдает тепло q2 охлаждающей воде;
2/-3 – конденсат адиабатически сжимается.
Термический к.п.д. цикла Ренкина определяется по уравнению:
ηt = (q1 – q2)/q1 . (7.1)
Так как: q1 = h1 – h3 ; q2 = h2 – h2
ηt = [(h1 – h2) — (h3 – h2/)] /( h1 – h3) = l / q1. (7.2)
Полезная работа цикла равна разности работ турбины и насоса:
где: lт = h1 – h2 , lн = h3 – h2
В основном lт >> lн , тогда считая h3 = h2 можно записать:
ηt = (h1 – h2)/( h1 – h3) . (7.3)
Теоретическуя мощность турбины рассчитывают по формуле:
Nт = (h1 – h2)·D/3600 , [Вт] (7.4)
где: D = 3600·m – часовой расход, [кг/ч]
m – секундный расход, [кг/с]
Способы повышения эффективности ПТУ
В реальном тепловом двигателе процессы необратимы, поскольку имеют место потери энергии вследствие трения и наличия других сопротивлений. Поэтому работа, мощность и КПД энергетической установки в действительности меньше, чем в идеальном цикле.
В частности, потери в действительном процессе расширения пара в турбине ПТУ, в результате которых растут энтальпия и энтропия по сравнению с их значениями в идеальном процессе, называются внутренними.
Из-за наличия этих внутренних потерь в турбине работа, получаемая в турбине:
Действительный КПД ПТУ с учетом внутренних потерь в турбине равен
где ηoi показывает, насколько действительный цикл менее совершенен, чем обратимый цикл (i – узел, в котором учитываются необратимые потери, в нашем случае это – турбина), и называется внутренним относительным КПД цикла.
Рассмотрим некоторые пути повышения эффективности ПТУ.
I. При увеличении давления пара в котле р1 (при постоянном давлении в конденсаторе р2 и температуре пара на выходе из пароперегревателя Т1) КПД цикла значительно увеличивается, что связано с повышением температуры насыщенного пара и, как следствие, с увеличением средней температуры подвода теплоты.
Но одновременно повышается конечная влажность пара (точка 2), в результате чего капли воды разрушают лопатки последних ступеней турбины (увеличивается относительный КПД турбины ηoi).
II. Повышение начальной температуры пара Т1 также увеличивает среднюю температуру подвода теплоты, к тому же (при постоянстве других параметров) увеличивается степень сухости отработанного пара. Повышение температуры перегрева пара ограничено жаропрочностью материала ПТУ.
III. Величина отводимой теплоты уменьшается с уменьшением давления отработавшего пара р2 и одновременно увеличивается доля теплоты, превращенной в полезную работу цикла. С другой стороны, с понижением р2 увеличивается влажность пара в конце процесса расширения в турбине, что приводит к увеличению потерь энергии и эрозионному износу деталей турбины. Допустимая влажность составляет 12 … 14%.
IV. Введение промежуточного перегрева пара вызывает изменения в цикле (рис. 12.7) и схеме ПТУ (рис. 12.8).
В этой установке турбина выполняется из двух частей – части высокого давления и части низкого давления. Промежуточный перегрев пара между этими частями установки (при правильном выборе давления промежуточного перегрева) позволяет избежать повышенной влажности в конце процесса расширения и, тем самым, предотвратить эрозию лопаток турбины, снизить потери на трение и повысить относительный внутренний КПД. Возможно применение многократного промежуточного перегрева. Каждая дополнительная ступень перегрева связана с потерей давления пара и усложнением установки.
V. Для повышения экономичности цикла ПТУ необходимо увеличивать среднюю температуру подвода теплоты в цикле. Поэтому большое значение имеет повышение температуры питательной воды, т.е. температуры, с которой начинается подвод теплоты в цикле. Для этой цели применяют специальные устройства регенераторы, которые передают теплоту, отобранную от рабочего тела в одном месте цикла, ему же, но в другом процессе цикла. Для осуществления регенерации необходимо, чтобы в цикле имелись участки, на которых подвод и отвод теплоты производились бы в одинаковых температурных условиях.
На рис. 12.9 представлена диаграмма цикла Ренкина с идеальным регенератором, в котором теплота отработанного пара идет на нагрев питательной воды после выхода из конденсатора. Таким образом, количество отведенной теплоты уменьшается, и, следовательно, КПД цикла увеличивается.
Газотурбинная установка — агрегат, состоящий из газотурбинного двигателя, редуктора, генератора и вспомогательных систем.
Газотурбинный двигатель – это тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на вал.
Рассмотрим принцип работы газотурбинной установки.
1 – разгонный двигатель;
2- камера сгорания;
4 – газовая турбина
Многоступенчатый компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания. В камеру сгорания подается и определенное количество топлива. При столкновении на высокой скорости топливо и воздух воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Затем, энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины.
Некоторая часть полученной энергии расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на электрический генератор. Работа, потребляемая этим агрегатом, является полезной работой ГТУ. Отработавшие газы направляются в утилизатор для получения тепловой энергии.
Чтобы более понятно и подробно узнать принцип действия газотурбинной установки, рассмотрим циклы ГТУ.
Циклы, такие как:
— цикл Брайтон (цикл при постоянном давлении)
— цикл работы ГТУ с подводом теплоты при постоянно объеме
Дата добавления: 2019-11-16 ; просмотров: 503 ; Мы поможем в написании вашей работы!
Источник
Паровые турбины: как горячий пар превращается в электричество
Учёные до сих пор бьются над поиском самых эффективных способов по выработке тока — прогресс устремился от гальванических элементов к первым динамо-машинам, паровым, атомным, а теперь солнечным, ветряным и водородным электростанциям. В наше время самым массовым и удобным способом получения электричества остаётся генератор, приводимый в действие паровой турбиной.
Паровые турбины были изобретены задолго до того, как человек понял природу электричества. В этом посте мы упрощённо расскажем об устройстве и работе паровой турбины, а заодно вспомним, как древнегреческий учёный опередил своё время на пятнадцать веков, как произошёл переворот в деле турбиностроения и почему Toshiba считает, что тридцатиметровую турбину надо изготавливать с точностью до 0,005 мм.
Как устроена паровая турбина
Принцип работы паровой турбины относительно прост, а её внутреннее устройство принципиально не менялось уже больше века. Чтобы понять принцип работы турбины, рассмотрим, как работает теплоэлектростанция — место, где ископаемое топливо (газ, уголь, мазут) превращается в электричество.
Сама по себе паровая турбина не работает, для функционирования ей нужен пар. Поэтому электростанция начинается с котла, в котором горит топливо, отдавая жар трубам с дистиллированной водой, пронизывающим котел. В этих тонких трубах вода превращается в пар.
Понятная схема работы ТЭЦ, вырабатывающей и электричество, и тепло для отопления домов. Источник: Мосэнерго
Турбина представляет собой вал (ротор) с радиально расположенными лопатками, словно у большого вентилятора. За каждым таким диском установлен статор — похожий диск с лопатками другой формы, который закреплён не на валу, а на корпусе самой турбины и потому остающийся неподвижным (отсюда и название — статор).
Пару из одного вращающегося диска с лопатками и статора называют ступенью. В одной паровой турбине десятки ступеней — пропустив пар всего через одну ступень тяжёлый вал турбины с массой от 3 до 150 тонн не раскрутить, поэтому ступени последовательно группируются, чтобы извлечь максимум потенциальной энергии пара.
На вход в турбину подаётся пар с очень высокой температурой и под большим давлением. По давлению пара различают турбины низкого (до 1,2 МПа), среднего (до 5 МПа), высокого (до 15 МПа), сверхвысокого (15—22,5 МПа) и сверхкритического (свыше 22,5 МПа) давления. Для сравнения, давление внутри бутылки шампанского составляет порядка 0,63 МПа, в автомобильной шине легковушки — 0,2 МПа.
Чем выше давление, тем выше температура кипения воды, а значит, температура пара. На вход турбины подается пар, перегретый до 550-560 °C! Зачем так много? По мере прохождения сквозь турбину пар расширяется, чтобы сохранять скорость потока, и теряет температуру, поэтому нужно иметь запас. Почему бы не перегреть пар выше? До недавних пор это считалось чрезвычайно сложным и бессмысленным —нагрузка на турбину и котел становилась критической.
Паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. Сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры на выходе (снижается давление и температура), после чего уходит в цилиндр среднего давления, а оттуда — низкого. Дело в том, что ступени для пара с разными параметрами имеют разные размеры и форму лопаток, чтобы эффективней извлекать энергию пара.
Но есть проблема — при падении температуры до точки насыщения пар начинает насыщаться, а это уменьшает КПД турбины. Для предотвращения этого на электростанциях после цилиндра высокого и перед попаданием в цилиндр низкого давления пар вновь подогревают в котле. Этот процесс называется промежуточным перегревом (промперегрев).
Цилиндров среднего и низкого давления в одной турбине может быть несколько. Пар на них может подаваться как с края цилиндра, проходя все лопатки последовательно, так и по центру, расходясь к краям, что выравнивает нагрузку на вал.
Вращающийся вал турбины соединён с электрогенератором. Чтобы электричество в сети имело необходимую частоту, валы генератора и турбины должны вращаться со строго определённой скоростью — в России ток в сети имеет частоту 50 Гц, а турбины работают на 1500 или 3000 об/мин.
Упрощённо говоря, чем выше потребление электроэнергии, производимой электростанцией, тем сильнее генератор сопротивляется вращению, поэтому на турбину приходится подавать бо́льший поток пара. Регуляторы частоты вращения турбин мгновенно реагируют на изменения нагрузки и управляют потоком пара, чтобы турбина сохраняла постоянные обороты. Если в сети произойдет падение нагрузки, а регулятор не уменьшит объём подаваемого пара, турбина стремительно нарастит обороты и разрушится — в случае такой аварии лопатки легко пробивают корпус турбины, крышу ТЭС и разлетаются на расстояние в несколько километров.
Как появились паровые турбины
Примерно в XVIII веке до нашей эры человечество уже укротило энергию стихии, превратив её в механическую энергию для совершения полезной работы — то были вавилонские ветряные мельницы. К II веку до н. э. в Римской империи появились водяные мельницы, чьи колёса приводились в движение нескончаемым потоком воды рек и ручьёв. И уже в I веке н. э. человек укротил потенциальную энергию водяного пара, с его помощью приведя в движение рукотворную систему.
Эолипил Герона Александрийского — первая и единственная на следующие 15 веков реактивная паровая турбина. Источник: American Mechanical Dictionary / Wikimedia
Греческий математик и механик Герон Александрийский описал причудливый механизм эолипил, представляющий собой закреплённый на оси шар с исходящими из него под углом трубками. Подававшийся в шар из кипящего котла водяной пар с силой выходил из трубок, заставляя шар вращаться. Придуманная Героном машина в те времена казалась бесполезной игрушкой, но на самом деле античный учёный сконструировал первую паровую реактивную турбину, оценить потенциал которой удалось только через пятнадцать веков. Современная реплика эолипила развивает скорость до 1500 оборотов в минуту.
В XVI веке забытое изобретение Герона частично повторил сирийский астроном Такиюддин аш-Шами, только вместо шара в движение приводилось колесо, на которое пар дул прямо из котла. В 1629 году схожую идею предложил итальянский архитектор Джованни Бранка: струя пара вращала лопастное колесо, которое можно было приспособить для механизации лесопилки.
Активная паровая турбина Бранка совершала хоть какую-то полезную работу — «автоматизировала» две ступки.
Несмотря на описание несколькими изобретателями машин, преобразующих энергию пара в работу, до полезной реализации было еще далеко — технологии того времени не позволяли создать паровую турбину с практически применимой мощностью.
Турбинная революция
Шведский изобретатель Густаф Лаваль много лет вынашивал идею создания некоего двигателя, который смог бы вращать ось с огромной скоростью — это требовалось для функционирования сепаратора молока Лаваля. Пока сепаратор работал от «ручного привода»: система с зубчатой передачей превращала 40 оборотов в минуту на рукоятке в 7000 оборотов в сепараторе. В 1883 году Лавалю удалось адаптировать эолипил Герона, снабдив-таки молочный сепаратор двигателем. Идея была хорошая, но вибрации, жуткая дороговизна и неэкономичность паровой турбины заставили изобретателя вернуться к расчетам.
Турбинное колесо Лаваля появилось в 1889 году, но его конструкция дошла до наших дней почти в неизменном виде.
Спустя годы мучительных испытаний Лаваль смог создать активную паровую турбину с одним диском. На диск с лопатками из четырех труб с соплами под давлением подавался пар. Расширяясь и ускоряясь в соплах, пар ударял в лопатки диска и тем самым приводил диск в движение. Впоследствии изобретатель выпустил первые коммерчески доступные турбины с мощностью 3,6 кВт, соединял турбины с динамо-машинами для выработки электричества, а также запатентовал множество новшеств в конструкции турбин, включая такую их неотъемлемую в наше время часть, как конденсатор пара. Несмотря на тяжёлый старт, позже дела у Густафа Лаваля пошли хорошо: оставив свою прошлую компанию по производству сепараторов, он основал акционерное общество и приступил к наращиванию мощности агрегатов.
Параллельно с Лавалем свои исследования в области паровых турбин вёл англичанин cэр Чарлз Парсонс, который смог переосмыслить и удачно дополнить идеи Лаваля. Если первый использовал в своей турбине один диск с лопатками, то Парсонс запатентовал многоступенчатую турбину с несколькими последовательно расположенными дисками, а чуть позже добавил в конструкцию статоры для выравнивания потока.
Турбина Парсонса имела три последовательных цилиндра для пара высокого, среднего и низкого давления с разной геометрией лопаток. Если Лаваль опирался на активные турбины, то Парсонс создал реактивные группы.
В 1889 году Парсонс продал несколько сотен своих турбин для электрификации городов, а еще пять лет спустя было построено опытное судно «Турбиния», развивавшее недостижимую для паровых машин прежде скорость 63 км/ч. К началу XX века паровые турбины стали одним из главных двигателей стремительной электрификации планеты.
Сейчас «Турбиния» выставляется в музее в Ньюкасле. Обратите внимание на количество винтов. Источник: TWAMWIR / Wikimedia
Турбины Toshiba — путь длиной в век
Стремительное развитие электрифицированных железных дорог и текстильной промышленности в Японии заставило государство ответить на возросшее электропотребление строительством новых электростанций. Вместе с тем начались работы по проектированию и производству японских паровых турбин, первые из которых были поставлены на нужды страны уже в 1920-х годах. К делу подключилась и Toshiba (в те годы: Tokyo Denki и Shibaura Seisaku-sho).
Первая турбина Toshiba была выпущена в 1927 году, она имела скромную мощность в 23 кВт. Уже через два года все производимые в Японии паровые турбины выходили из фабрик Toshiba, были запущены агрегаты с общей мощностью 7500 кВт. Кстати, и для первой японской геотермальной станции, открытой в 1966 году, паровые турбины также поставляла Toshiba. К 1997 году все турбины Toshiba имели суммарную мощность 100000 МВт, а к 2017 поставки настолько возросли, что эквивалентная мощность составила 200000 МВт.
Такой спрос обусловлен точностью изготовления. Ротор с массой до 150 тонн вращается со скоростью 3600 оборотов в минуту, любой дисбаланс приведёт к вибрациям и аварии. Ротор балансируется с точностью до 1 грамма, а геометрические отклонения не должны превышать 0,01 мм от целевых значений. Оборудование с ЧПУ помогает снизить отклонения при производстве турбины до 0,005 мм — именно такая разница с целевыми параметрами среди сотрудников Toshiba считается хорошим тоном, хотя допустимая безопасная погрешность на порядок больше. Также каждая турбина обязательно проходит стресс-тест при повышенных оборотах — для агрегатов на 3600 оборотов тест предусматривает разгон до 4320 оборотов.
Удачное фото для понимания размеров ступеней низкого давления паровой турбины. Перед вами коллектив лучших мастеров завода Toshiba Keihin Product Operations. Источник: Toshiba
Эффективность паровых турбин
Паровые турбины хороши тем, что при увеличении их размеров значительно растёт вырабатываемая мощность и КПД. Экономически гораздо выгодней установить один или несколько агрегатов на крупную ТЭС, от которой по магистральным сетям распределять электричество на большие расстояния, чем строить местные ТЭС с малыми турбинами, мощностью от сотен киловатт до нескольких мегаватт. Дело в том, что при уменьшении габаритов и мощности в разы растёт стоимость турбины в пересчёте на киловатт, а КПД падает вдвое-втрое.
Электрический КПД конденсационных турбин с промперегревом колеблется на уровне 35-40%. КПД современных ТЭС может достигать 45%.
Если сравнить эти показатели с результатами из таблицы, окажется, что паровая турбина — это один из лучших способов для покрытия больших потребностей в электричестве. Дизели — это «домашняя» история, ветряки — затратная и маломощная, ГЭС — очень затратная и привязанная к местности, а водородные топливные элементы, про которые мы уже писали — новый и, скорее, мобильный способ выработки электроэнергии.
Интересные факты
Самая мощная паровая турбина: такой титул могут по праву носить сразу два изделия — немецкая Siemens SST5-9000 и турбина производства ARABELLE, принадлежащей американской General Electric. Обе конденсационных турбины выдают до 1900 МВт мощности. Реализовать такой потенциал можно только на АЭС.
Рекордная турбина Siemens SST5-9000 с мощностью 1900 МВт. Рекорд, но спрос на такие мощности очень мал, поэтому Toshiba специализируется на агрегатах с вдвое меньшей мощностью. Источник: Siemens
Самая маленькая паровая турбина была создана в России всего пару лет назад инженерами Уральского федерального университета — ПТМ-30 всего полметра в диаметре, она имеет мощность 30 кВт. Малютку можно использовать для локальной выработки электроэнергии при помощи утилизации избыточного пара, остающегося от других процессов, чтобы извлекать из него экономическую выгоду, а не спускать в атмосферу.
Российская ПТМ-30 — самая маленькая в мире паровая турбина для выработки электричества. Источник: УрФУ
Самым неудачным применением паровой турбины стоит считать паротурбовозы — паровозы, в которых пар из котла поступает в турбину, а затем локомотив движется на электродвигателях или за счет механической передачи. Теоретически паровая турбина обеспечивала в разы больший КПД, чем обычный паровоз. На деле оказалось, что свои преимущества, как то высокая скорость и надежность, паротурбовоз проявляет только на скоростях выше 60 км/ч. При меньшей скорости движения турбина потребляет чересчур много пара и топлива. США и европейские страны экспериментировали с паровыми турбинами на локомотивах, но ужасная надежность и сомнительная эффективность сократили жизнь паротурбовозов как класса до 10-20 лет.
Угольный паротурбовоз C&O 500 ломался почти каждую поездку, из-за чего уже спустя год после выпуска был отправлен на металлолом. Источник: Wikimedia
Источник