Способы повышения кпд паросиловых установок

3. Методы повышения кпд паросиловых установок.

Прежде чем перейти к описанию термодинамических методов и приемов по увеличению КПД, введем некоторое вспомогательное понятие. Необходимость этого введения состоит в следующем. Дело в том, что ηt, по определению, есть отношение «пользы» к «затратам». Практически все методы повышения КПД одновременно изменяют и числитель и знаменатель дроби ηt. И поэтому возникает неопределенность в поведении всей дроби.

С другой стороны, этой неопределенности нет, если имеем дело с циклом Карно, так как изменение температуры источника теплоты Т1 и стока теплоты Т2 довольно однозначно говорит об изменении ηt к . Кроме того, все термодинамические методы и приемы повышения КПД паросиловых установок не изменяют величину Т2, так как практически ее трудно изменить.

Итак, подвод теплоты в цикле Ренкина происходит по некоторой ломаной кривой (см. рис. 6.4 и диаграмму Т – s, процесс 4 – 5 – 1, р1 = const).

Определение: средне интегральной температурой процесса подвода теплоты в паросиловом цикле называется

(6.6)

Иными словами, в математике называют средне интегральной величиной функции на каком-то интервале изменения аргумента. Тогда для любого цикла паросиловой установки эквивалентный цикл Карно будет иметь КПД, равный:

Любое предложение по увеличению или изменению ηt паросиловой установки будем оценивать по изменению .

3.1. Повышение температуры рабочего тела перед турбиной.

На рис. 6.6 представлена иллюстрация этого приема повышения термического коэффициента полезного действия.

Обращаем внимание, что количество «пользы», т.е. работы за цикл увеличилось с увеличением Т1, но одновременно увеличились потери теплоты в конденсаторе, увеличились затраты теплоты за цикл. Здесь наглядно видно, что у дроби ηt увеличился и числитель и знаменатель, а результат неопределенен (см. (6.5)). Зато воочию видно, что увеличение Т1 до Т1΄ увеличивает . Следовательно, ηt увеличивается с увеличением Т1.

Рис. 6.6. Иллюстрация метода повышения ηt путем

увеличения температуры Т1 пара перед турбиной.

Замечание. Производя увеличение Т1, мы сознательно не меняли все остальные параметры цикла Ренкина. Нельзя же изменять все сразу, чтобы выявить какую-то закономерность.

3.2. Повышение давления рабочего тела перед турбиной.

На рис. 6.7 представлена иллюстрация этого метода повышения ηt.

Рис. 6.7. Иллюстрация метода повышения ηt путем повышения

давления водяного пара перед турбиной.

Судя по рис. 6.7, трудно решить, увеличились или уменьшилась работа за цикл, зато потери теплоты в конденсаторе явно уменьшились. Если же использовать понятие , то из рис. 6.7 следует, что с увеличением р1 величина тоже увеличилась, а температура Т2 не изменилась. Следовательно, однозначно можно сделать вывод, что увеличение давления пара перед турбиной увеличивает термический коэффициент полезного действия ηt.

Замечание. Повышение температуры Т1 пара перед турбиной мало эффективно, так как изобары p = const довольно круто идут вверх в области перегретого водяного пара. Такова уж природа этого вещества.

Читайте также:  Способы монтажа системы отопления

Замечание. Оба метода повышения ηt, показанных выше, «благославляются» термодинамикой. А практически увеличение температуры и давления водяного пара перед турбиной ограничивается набором термостойких и особо прочных материалов для изготовления и котельного агрегата и турбины. Здесь во весь свой грозный рост встает наука «Материаловедение».

Источник

Цикл Ренкина. Пути повышения КПД паросиловых установок

В основе работы современных теплосиловых установок, использующих в качестве рабочего тела водяной пар, лежит цикл, предложенный шотландским инженером У. Ренкиным в 50-х гг. XIX века.

Схема простейшей паросиловой установки, работающей по циклу Ренкина, включает в себя паровой котел 1 (рис. 4.19) с пароперегревателем 2, паровую турбину 3, конденсатор 4 и питательный насос 5.

Ошибка! Ошибка связи. Ошибка! Ошибка связи.

Рис. 4.19 Рис. 4.20

В паровом котле за счет тепла продуктов сгорания топлива питательная вода нагревается до температуры кипения (процесс 3 – 4 на рис. 4.20), затем превращается в пар (4 – 5).

Образующийся в котле пар со степенью сухости, близкой к х = 1, направляется в пароперегреватель, где осуществляется подсушка и перегрев пара до температуры T1 (5 – 1). Весь процесс подвода тепла 3 – 4 – 5 – 1 протекает при одном и том же давлении (p1 = const).

Далее пар с параметрами р1, T1 поступает в турбину, где расширяется до давления р2 и совершает работу. Процесс расширения 1 – 2 в проточной части турбины протекает в идеальном цикле Ренкина адиабатно, без потерь, следовательно, s1 = s2. Работа расширения пара используется на вращение ротора электрического генератора.

После турбины пар с давлением р2 и степенью сухости х2 поступает в конденсатор, где осуществляется изобарно-изотермный процесс конденсации
2 – 3. Внутренняя поверхность трубок конденсатора охлаждается циркуляционной водой, а пар конденсируется в межтрубном пространстве. Образующийся конденсат откачивается питательным насосом, который повышает его давление и подает в котел. Процесс повышения давления воды в насосе в Т, s-диаграмме не изображен, так как в точке 3 изобары p1 и р2 практически сливаются. Кроме того, работа насоса весьма мала в сравнении с работой расширения пара в турбине, поэтому из рассмотрения ее можно исключить.

Эффективность полученного цикла оценивается термическим КПД, определяемым по общей формуле: .

Подведенное в цикле тепло q1 отражается на Т, s-диаграмме площадью
3 – 4 – 5 – 1 – 7 – 6. Поскольку процесс подвода тепла осуществляется изобарно, то количество тепла равно разности энтальпий начала и конца процесса:
q1 = h1 – h3.

Энтальпия точки 3 представляет собой энтальпию кипящей жидкости при давлении p2, поэтому можно записать: .

Отведенное от рабочего тела в конденсаторе тепло (площадка 3 – 2 – 7 – 6) запишется как .

Подставляя значения q1 и q2 в исходное уравнение, получаем формулу термического КПД идеального цикла Ренкина:

. (4.47)

Величину термического КПД цикла Ренкина удобно определять с помощью h, s-диаграммы (рис. 4.21). По заданным начальным параметрам р1 и t1 находят точку 1 и определяют энтальпию h1. Через точку 1 проводят вертикальную линию до пересечения с изобарой р2. Полученный отрезок 1 – 2 характеризует процесс адиабатного расширения пара в проточной части турбины. В точке 2 определяют энтальпию h2. Разность энтальпий h1 – h2 представляет собой располагаемый теплоперепад h0. Энтальпия конденсата h2‘ определяется по температуре насыщения t2, соответствующей давлению p2. При t2 р2 и направляется в подогреватель 6. Здесь отборный пар конденсируется, отдавая скрытую теплоту парообразования на подогрев основного конденсата, подаваемого в подогреватель из конденсатора насосом 5. После смешения обоих потоков конденсата последний подается в котел насосом 7.

Читайте также:  Открытый конкурс это способ определения поставщика при котором

Ошибка! Ошибка связи. Ошибка! Ошибка связи.

Рис. 4.27 Рис. 4.28

Изобразить регенеративный цикл в Т, s-диаграмме можно лишь условно (рис. 4.28), так как диаграмма состояния строится для постоянного количества рабочего тела (1 кг), тогда как здесь по длине проточной части турбины поток рабочего тела изменяется.

Основная часть пара, следующего после турбины в конденсатор, совершает цикл 1 – 2 – 3 – 4. Пар, взятый из отбора (обозначим его долю через α) работает по циклу 1 – 5 – 6 – 4. Очевидно, что работа этого цикла меньше, чем основного. Однако отведенное в нем тепло (площадка 5 – 6 – 7 – 8) не отдается в окружающую среду, а идет на подогрев питательной воды (площадка 3 – 6 – 7 – 9). Из условия равенства тепла, отданного в подогревателе отборным паром, и тепла, воспринятого конденсатом, запишем уравнение теплового баланса регенеративного подогревателя:

. (4.50)

Отсюда доля отбираемого пара, необходимого для подогрева питательной воды до состояния точки 6,

. (4.51)

Обозначив энтальпию отбираемого пара hот, а после его конденсации hот‘, имеем:

. (4.52)

Подведенное в цикле тепло (по линии 6 – 4 – 1 в Т, s- диаграмме) .

Работа 1 кг пара складывается из работы отдельных потоков (в нашем примере двух): .

Термический КПД регенеративного цикла с одним отбором пара на подогрев питательной воды определяется выражением:

. (4.53)

Независимо от давления пара в регенеративном отборе некоторая часть работы турбины совершается без потерь теплоты парообразования в конденсаторе, а с использованием ее в регенеративном подогревателе. Теоретически тепло той доли пара, которая идет в регенеративный отбор, используется в цикле на 100 %. Поэтому термический КПД регенеративного цикла выше, чем цикла Ренкина без регенерации.

С увеличением числа отборов термический КПД возрастает. Учитывая, однако, сложность и удорожание установки, число регенеративных отборов выбирают в пределах 5 – 10.

Значение регенеративного цикла становится наиболее существенным при высоком начальном давлении пара, когда затраты тепла на нагревание воды растут, а на парообразование – уменьшаются. В этом случае применение регенеративного подогрева питательной воды приводит к увеличению термического КПД до 10 – 12 %.

Разберем еще один способ повышения эффективности использования
тепла, применяемый в теплофикационных циклах.

В установках, работающих по циклу Ренкина, значительная часть тепла q2 отводится холодному источнику. Снижением конечного давления р2 добиваются некоторого уменьшения тепла q2, отводимого в конденсаторе, что приводит к увеличению термического КПД цикла. Однако при малых давлениях р2, поддерживаемых в современных установках на уровне 0,03 – 0,05 бар, температура конденсации пара имеет значения 24 – 32 °С. Использование теплоты конденсации с таким низким температурным потенциалом становится экономически нецелесообразным.

Читайте также:  Способы обеспечения исполнения контракта гарантийных обязательств

Стремление использовать тепло q2, отдаваемое конденсирующимся паром, приводит к необходимости повышения давления, а следовательно, и температуры конденсации. При этом неизбежно снижается термический КПД цикла, уменьшается работа цикла l, идущая на выработку электроэнергии (рис. 4.29). Вместе с тем представляется возможность получения больших количеств тепла для технологических и бытовых нужд. В установке, таким образом, осуществляется комбинированная выработка электроэнергии и тепла.

Цикл такой установки называется теплофикационным, а электростанции, вырабатывающие электроэнергию и тепло, называются теплоэлектроцент-ралями.

Эффективность теплофикационного цикла можно оценивать коэффициентом использования тепла

. (4.54)

Поскольку в любом обратимом цикле l + q2 = q1, то теоретически K = 1. На практике величина К всегда меньше единицы из-за наличия потерь тепла в котлоагрегате и паропроводе, механических и электрических потерь в турбине и генераторе.

Цикл холодильной установки

Холодильными установками называют устройства, предназначенные для понижения температуры тел и поддержания ее на заданном уровне. Вырабатываемый ими искусственный холод находит все более широкое применение в химической и пищевой промышленности, в строительстве, торговле, транспорте, в системах кондиционирования воздуха и других отраслях промышленности и коммунального хозяйства.

В настоящее время используются различные типы холодильных установок – воздушные, парокомпрессорные, пароэжекторные, абсорбционные, термоэлектрические, которые отличаются как по роду рабочего тела, так и по принципу действия. Наиболее распространенные парокомпрессорные холодильные установки используют в качестве рабочего тела (хладагента) вещества, имеющие низкие температуры кипения, например аммиак, фреоны. Принципиальная схема такой установки представлена на рис. 4.30, а T, s-диаграмма осуществляемого в ней обратного цикла – на рис. 4.31.

Ошибка! Ошибка связи. Ошибка! Ошибка связи.

Рис. 4.30 Рис. 4.31

В компрессоре 1 сухой пар хладагента адиабатно сжимается (1 – 2) до давления р2 и направляется в конденсатор 2. Здесь происходят охлаждение и конденсация рабочего тела за счет отвода тепла q1 циркулирующей водой. Жидкость дросселируется от давления p2 до давления р1 в дросселе 3. Процесс дросселирования 3 – 4 протекает при неизменной энтальпии h3 = h4. В точке 4 получается парожидкостная смесь, которая следует в испаритель 4, где за счет подвода тепла q2 происходит испарение жидкой фазы хладагента (4 – 1).

Работа, затрачиваемая на осуществление обратного цикла, l = q1 – q2. Количество отведенного в цикле тепла q1 = h2 – h3.

Подведенное к рабочему телу в испарителе тепло q2 является одновременно теплом, которое с каждым циклом отводится от охлаждаемого объекта и называется удельной хладопроизводительностью установки, кДж/кг: q2 = h1 – h4. Поскольку h3 = h4, то l = h1 – h2.

Теоретический холодильный коэффициент установки

. (4.55)

Значения ε находятся в пределах 3 – 5, т. е. количество вырабатываемого холода в несколько раз больше затрат работы.

Источник

Оцените статью
Разные способы