Способы повышения качества стали
Улучшить качество металла можно уменьшением в нём вредных примесей, газов, неметаллических включений. Для повышения качества металла используют: обработку синтетическим шлаком, вакуумную дегазацию металла, электрошлаковый переплав (ЭШП), вакуумно-дуговой переплав (ВДП), переплав металла в электронно-дуговых и плазменных печах и т. д.
Вакуумная дегазация проводится для уменьшения содержания в металле газов вследствие снижения их растворимости в жидкой стали при пониженном давлении и неметаллических включений.
Вакуумирование стали проводят в ковше, при переливе из ковша в ковш, при заливке в изложницу.
Для вакуумирования в ковше ковш с жидкой сталью помещают в камеру, закрывающуюся герметичной крышкой. Вакуумными насосами создают разрежение до остаточного давления 0,267…0,667 кПа. При понижении давления из жидкой стали выделяются водород и азот. Всплывающие пузырьки газов захватывают неметаллические включения, в результате чего содержание их в стали снижается. Улучшаются прочность и пластичность стали.
Вакуумирование в ковше эффективно проводить до раскисления сильными раскислителями – кремнием и алюминием. Углерод металла реагирует с кислородом, окись углерода откачивается, а с ней откачиваются азот и водород. В результате металл раскисляется без образования неметаллических включений и дегазируется.
При вакуумировании струи металла при переливе из ковша в ковш пустой ковш устанавливают в вакуумной камере, откачивают воздух. Подают к камере второй ковш с металлом. Металл из верхнего ковша через воронку переливают в нижний, при этом вакуум в камере не нарушается. Попадая в разреженное пространство, струя распадается на мелкие капли. Дегазация в вакууме раздробленной струи более эффективна по сравнению с вакуумированием металла в ковше.
Для высококачественных и некоторых высоколегированных сталей применяют отливку слитков в вакууме. Используют камеру, состоящую из двух частей. В нижнюю помещают просушенную изложницу, в верхней части на плиту герметично устанавливают промежуточный ковш. Откачивают из камеры воздух, в промежуточный ковш наливают металл и начинают разливку. Степень дегазации зависит от остаточного давления. Газы удаляются не только из слитка, но и из струи металла, протекающей в вакууме. Значительное снижение содержания водорода (до 60. 70 %) обеспечивает получение стали, нечувствительной к флокенам, что упрощает процесс производства крупных поковок. Слитки, полученные таким способом, характеризуются повышенными механическими свойствами, но стоимость их значительно повышается.
Способы разливки стали — в настоящее время разливку стали ведут преимущественно в изложницы или на установках непрерывной разливки (МНЛЗ). Способ разливки стали в изложницы делят на: разливку стали сверху или сифонную разливку стали. При разливке сверху металл поступает в изложницу 1 непосредственно из сталеразливочного ковша 2 (рисунок 1, а) или через промежуточное устройство 3. В случае сифонной разливки (рис. 2) жидкая сталь из сталеразливочного ковша 1 попадает в центровую 2 и затем по сифонной проводке 3 снизу поступает в изложницы 4, установленные на поддоне 5. Исторически сложилось так, что разливка сверху явилась первым способом отливки стальных слитков. В дальнейшем с повышением требований к качеству поверхности слитков, улучшением технологии изготовления огнеупорных изделий и увеличением емкости сталеплавильных агрегатов сифонный способ разливки стали получил широкое распространение на заводах, где не были установлены мощные обжимные станы и поэтому отливали мелкие слитки. Как показали результаты неоднократно проведенных сравнительных исследований, качественные показатели металла (механические свойства, макроструктура, содержание неметаллических включений и т. д.), а также величина брака из-за дефектов металла в прокатных цехах и на машиностроительных заводах практически не зависят от способа разливки.
10-11
Для производства цветных металлов — свинца, олова, цинка, вольфрама и молибдена пользуются некоторыми технологическими приемами, рассмотренными выше, но естественно, что схемы производства этих цветных металлов и агрегаты для их получения имеют свои особенности. Следует коротко остановиться на довольно распространенном хлоридном способе получения металлов, что можно сделать на примере производства таких металлов, как магний и титан, имеющих большое значение в промышленности. Основы хлоридных методов производства цветных металлов Хлор обладает большим химическим сродством к металлам и при определенных условиях может вытеснить кислород из оксидов с образованием хлоридов. Процесс значительно облегчается в присутствии углерода, так как в этом случае кислород соединяется с углеродом. Например, применительно к двухвалентному металлу возможны следующие процессы: МеО + Cl2 = МеCl2 + l/2O2 — Q1; МеО + Cl2 + С = МеCl2 + СО — Q2. При этом Q2 меньше Q1, (по абсолютному значению), и даже в некоторых случаях процесс, протекающий по второй реакции, экзотермичен. Следует подчеркнуть, что и реакции первого типа протекают при более низких температурах, чем аналогичные реакции восстановления оксидов углеродом. Важным обстоятельством является то, что хлориды обычно образуются в газообразном состоянии, легко уводятся из процесса, а процесс производства карбидообразующих металлов хлоридным методом в отличие от восстановления углеродом обеспечивает получение малоуглеродистого продукта. В некоторых случаях хлориды находятся в недрах земли или в соленых водоемах. Из хлоридов металлы получают восстановлением или же электролизом из расплавов.
Источник
СПОСОБЫ ПОВЫШЕНИЯ КАЧЕСТВА СТАЛИ
Развитие машиностроения и приборостроения предъявляет возрастающие требования к качеству металла: его прочности, пластичности, газосодержанию. Улучшить эти показатели можно уменьшением в металле вредных примесей, газов, неметаллических включений. Для повышения качества металла используют обработку металлов синтетическим шлаком, вакуумную дегазацию металла, электрошлаковый переплав (ЭШП), вакуумно-дуговой переплав (ВДП), переплав металла в электронно-лучевых и плазменных печах и другие способы.
Обработка металла синтетическим шлаком(рис. 2.12) заключается в следующем. Синтетический шлак, состоящий из 55 % СаО, 40 % А12О3, небольшого количества SiO2, MgO и минимума FeO, выплавляют в электропечи и заливают в ковш (рис. 2.12, а). В этот же ковш затем заливают сталь (рис. 2.12, б). При перемешивании стали и шлака поверхность их взаимодействия резко возрастает, и реакции между ними протекают гораздо быстрее, чем в плавильной печи. Благодаря этому, а также низкому содержанию оксида железа в шлаке сталь, обработанная таким способом, содержит меньше серы, кислорода и неметаллических включений, улучшаются ее пластичность и прочность. Такие стали применяют для изготовления ответственных деталей машин.
Рис. 2.12. Схема обработки стали синтетическим шлаком
Вакуумирование сталипроводят для понижения концентрации кислорода, водорода, азота и неметаллических включений. Для вакуумирования используются различные способы, например вакуумирование в ковше, циркуляционное и поточное вакуумирование, струйное и порционное вакуумирование и др.
При вакуумной обработке стали происходит раскисление углеродом, так как при снижении давления в камере концентрации углерода и кислорода становятся избыточными и появляется термодинамическая возможность протекания реакции окисления углерода. Вакуумирование стали сопровождается кипением металла. Для примера рассмотрим вакуумирование стали в ковше, циркуляционное и поточное вакуумирование.
Вакуумирование стали в ковше(рис. 2.13, а) осуществляется в камере 1, в которую устанавливается ковш 2 со сталью, после чего камеру герметично закрывают крышкой 3 и соединяют с работающим вакуум-насосом. На крышке камеры предусмотрен бункер 4 для ферросплавов. При достижении разрежения с остаточным давлением 0,267 . 0,667 кПа металл закипает, что свидетельствует о начале дегазации. Длительность обработки зависит от температуры стали в ковше и ее массы и составляет 10 . 20 мин. По окончании обработки камеру соединяют с атмосферой, открывают камеру и ковш со сталью увозят на разливку.
Циркуляционное вакуумированиеосуществляется на установке (рис. 2.13, б), которая состоит из вакуумной камеры 1 со всасывающей 2 и сливной 3 трубами, опускаемыми в ковш 5 со сталью. В установке предусмотрен бункер 4 для ферросплавов. После создания разрежения с остаточным давлением 0,267 . 0,667 кПа в камере образуется слой металла высотой 200 . 400 мм. В нижней части одной из труб имеется кольцевой коллектор 6 с соплами для ввода транспортирующего газа — аргона. Аргон, попадая в расплавленную сталь, образует взвесь мелких пузырьков, поднимающихся по трубе и увлекающих за собой металл. Попадая в камеру, металл вакуумируется и стекает по второй трубе в ковш. При скорости движения металла через камеру 15 . 20 т/мин длительность вакуумирования составляет 20 . 30 мин. Расход аргона 10 . 28 л/т. Вследствие непрерывного смешивания обработанного металла с необработанным требуется трех-, четырехкратное прохождение стали через камеру.
Поточное вакуумированиестали осуществляется при непрерывной разливке. На рис. 2.13, в приведена схема вакуумной обработки стали с промежуточной вакуум-камерой. Разливочный ковш / со сталью герметически устанавливают на вакуумную камеру 2, патрубок 3 погружен в металл промежуточного ковша 4. Сталь из промежуточного ковша поступает в кристаллизатор 5, из которого вытягивается слиток 6. Этим способом при непрерывной разливке вакуумируют как спокойную, так и низкоуглеродистую кипящую сталь, получая плотные слитки.
Электрошлаковый переплав (ЭШП)применяют для выплавки высококачественных сталей для шарикоподшипников, жаропрочных сталей для дисков и лопаток турбин, валов компрессоров, авиационных конструкций. Переплаву подвергают выплавленный в дуговой печи и прокатанный на круглые прутки металл. Источником теплоты при ЭШП является шлаковая ванна, нагреваемая при прохождении через нее электрического тока. Электрический ток подводится к переплавляемому электроду 1, погруженному в шлаковую ванну 2, и к поддону 9, установленному в водоохлаждаемом металлическом кристаллизаторе 7, в котором находится затравка 8 (рис. 2.14). Выделяющаяся теплота нагревает шлаковую ванну 2 до температуры свыше 1700 °С и вызывает оплавление конца электрода. Капли жидкого металла 3 проходят через шлак, образуют под шлаковым слоем металлическую ванну 4.
Перенос капель металла через основной шлак способствует их активному взаимодействию, удалению из металла серы, неметаллических включений и растворенных газов. Металлическая ванна непрерывно пополняется путем расплавления электрода, под воздействием кристаллизатора постепенно формируется в слиток 6. Последовательная и направленная кристаллизация способствует получению плотного однородного слитка.
В результате ЭШП содержание кислорода в металле снижается в 1,5 . 2 раза, концентрация серы снижается в 2 . 3 раза, уменьшается содержание неметаллических включений, они становятся мельче и равномерно распределяются в объеме слитка. Слиток отличается плотностью, однородностью, хорошим качеством поверхности благодаря наличию шлаковой корочки 5, высокими механическими и эксплуатационными свойствами стали и сплавов. Слитки выплавляют круглого, квадратного, прямоугольного сечений массой до 110т.
Рис. 2.13. Ковшовое (а), циркуляционное (б) и поточное (в) вакуумирование стали
Рис. 2.14. Схемы электрошлакового переплава расходуемым электродом:
а — кристаллизатор; б — схема включения установки
Вакуумно-дуговой переплав (ВДП)применяют в целях удаления из металла газов и неметаллических включений. Процесс осуществляется в вакуумно-дуговых печах с расходуемым электродом (рис. 2.15). В зависимости от требований, предъявляемых к получаемому металлу, расходуемый электрод изготовляют механической обработкой слитка, выплавленного в электропечах или установках ЭШП. Расходуемый электрод 3 закрепляют на водоохлаждаемом штоке 2 и помещают в корпус 1 печи и далее в медную водоохлаждаемую изложницу 6. Из корпуса печи откачивают воздух до остаточного давления 0,00133 кПа.
При подаче напряжения между расходуемым электродом — катодом 3 и затравкой — анодом 8 возникает дуга. Выделяющаяся теплота расплавляет конец электрода; капли 4 жидкого металла, проходя зону дугового разряда, дегазируются, заполняют изложницу и затвердевают, образуя слиток 7. Дуга горит между расходуемым электродом и жидким металлом 5 в верхней части слитка на протяжении всей плавки. Сильное охлаждение слитка и разогрев дугой ванны металла создают условия для направленного затвердевания слитка, вследствие чего неметаллические включения сосредоточиваются в верхней части слитка, а усадочная раковина в слитке мала. Слитки ВДП содержат мало газов, неметаллических включений, отличаются высокой равномерностью химического состава, повышенными механическими свойствами. Из слитков изготовляют ответственные детали турбин, двигателей, авиационных конструкций. Масса слитков достигает 50 т.
Плавку в электронно-лучевых печах (ЭЛП)применяют для получения чистых и ультрачистых тугоплавких металлов (молибдена, ниобия, циркония и др.), для выплавки специальных сплавов и сталей. Источником теплоты в этих печах является энергия, выделяющаяся при торможении свободных электронов, пучок которых направлен на металл. Получение электронов, их разгон, концентрация в луч, направление луча в зону плавления осуществляются электронной пушкой. Металл плавится и затвердевает в водоохлаждаемых кристаллизаторах при остаточном давлении 1,33 Па. Вакуум внутри печи, большой перегрев и высокие скорости охлаждения слитка способствуют удалению газов и примесей, получению металла особо высокого качества. Однако при переплаве шихты, содержащей легкоиспаряющиеся элементы, изменяется химический состав металла.
Рис. 2.15. Схема вакуумно-дугового переплава
Плавку стали в плазменно-дуговых печах (ПДП)применяют для получения высококачественных сталей и сплавов. Источник теплоты — низкотемпературная плазма (30 000 °С), получаемая в плазменных горелках. В этих печах можно создавать нейтральную среду заданного состава (аргон, гелий). Плазменно-дуговые печи позволяют быстро расплавить шихту, в нейтральной газовой среде происходит дегазация выплавляемого металла, легкоиспаряющиеся элементы, входящие в его состав, не испаряются.
Источник