Способы повышения экономичности паросилового цикла

Цикл Ренкина. Пути повышения КПД паросиловых установок

В основе работы современных теплосиловых установок, использующих в качестве рабочего тела водяной пар, лежит цикл, предложенный шотландским инженером У. Ренкиным в 50-х гг. XIX века.

Схема простейшей паросиловой установки, работающей по циклу Ренкина, включает в себя паровой котел 1 (рис. 4.19) с пароперегревателем 2, паровую турбину 3, конденсатор 4 и питательный насос 5.

Ошибка! Ошибка связи. Ошибка! Ошибка связи.

Рис. 4.19 Рис. 4.20

В паровом котле за счет тепла продуктов сгорания топлива питательная вода нагревается до температуры кипения (процесс 3 – 4 на рис. 4.20), затем превращается в пар (4 – 5).

Образующийся в котле пар со степенью сухости, близкой к х = 1, направляется в пароперегреватель, где осуществляется подсушка и перегрев пара до температуры T1 (5 – 1). Весь процесс подвода тепла 3 – 4 – 5 – 1 протекает при одном и том же давлении (p1 = const).

Далее пар с параметрами р1, T1 поступает в турбину, где расширяется до давления р2 и совершает работу. Процесс расширения 1 – 2 в проточной части турбины протекает в идеальном цикле Ренкина адиабатно, без потерь, следовательно, s1 = s2. Работа расширения пара используется на вращение ротора электрического генератора.

После турбины пар с давлением р2 и степенью сухости х2 поступает в конденсатор, где осуществляется изобарно-изотермный процесс конденсации
2 – 3. Внутренняя поверхность трубок конденсатора охлаждается циркуляционной водой, а пар конденсируется в межтрубном пространстве. Образующийся конденсат откачивается питательным насосом, который повышает его давление и подает в котел. Процесс повышения давления воды в насосе в Т, s-диаграмме не изображен, так как в точке 3 изобары p1 и р2 практически сливаются. Кроме того, работа насоса весьма мала в сравнении с работой расширения пара в турбине, поэтому из рассмотрения ее можно исключить.

Эффективность полученного цикла оценивается термическим КПД, определяемым по общей формуле: .

Подведенное в цикле тепло q1 отражается на Т, s-диаграмме площадью
3 – 4 – 5 – 1 – 7 – 6. Поскольку процесс подвода тепла осуществляется изобарно, то количество тепла равно разности энтальпий начала и конца процесса:
q1 = h1 – h3.

Энтальпия точки 3 представляет собой энтальпию кипящей жидкости при давлении p2, поэтому можно записать: .

Отведенное от рабочего тела в конденсаторе тепло (площадка 3 – 2 – 7 – 6) запишется как .

Подставляя значения q1 и q2 в исходное уравнение, получаем формулу термического КПД идеального цикла Ренкина:

. (4.47)

Величину термического КПД цикла Ренкина удобно определять с помощью h, s-диаграммы (рис. 4.21). По заданным начальным параметрам р1 и t1 находят точку 1 и определяют энтальпию h1. Через точку 1 проводят вертикальную линию до пересечения с изобарой р2. Полученный отрезок 1 – 2 характеризует процесс адиабатного расширения пара в проточной части турбины. В точке 2 определяют энтальпию h2. Разность энтальпий h1 – h2 представляет собой располагаемый теплоперепад h0. Энтальпия конденсата h2‘ определяется по температуре насыщения t2, соответствующей давлению p2. При t2 р2 и направляется в подогреватель 6. Здесь отборный пар конденсируется, отдавая скрытую теплоту парообразования на подогрев основного конденсата, подаваемого в подогреватель из конденсатора насосом 5. После смешения обоих потоков конденсата последний подается в котел насосом 7.

Ошибка! Ошибка связи. Ошибка! Ошибка связи.

Рис. 4.27 Рис. 4.28

Изобразить регенеративный цикл в Т, s-диаграмме можно лишь условно (рис. 4.28), так как диаграмма состояния строится для постоянного количества рабочего тела (1 кг), тогда как здесь по длине проточной части турбины поток рабочего тела изменяется.

Основная часть пара, следующего после турбины в конденсатор, совершает цикл 1 – 2 – 3 – 4. Пар, взятый из отбора (обозначим его долю через α) работает по циклу 1 – 5 – 6 – 4. Очевидно, что работа этого цикла меньше, чем основного. Однако отведенное в нем тепло (площадка 5 – 6 – 7 – 8) не отдается в окружающую среду, а идет на подогрев питательной воды (площадка 3 – 6 – 7 – 9). Из условия равенства тепла, отданного в подогревателе отборным паром, и тепла, воспринятого конденсатом, запишем уравнение теплового баланса регенеративного подогревателя:

Читайте также:  Моль способы борьбы с молью

. (4.50)

Отсюда доля отбираемого пара, необходимого для подогрева питательной воды до состояния точки 6,

. (4.51)

Обозначив энтальпию отбираемого пара hот, а после его конденсации hот‘, имеем:

. (4.52)

Подведенное в цикле тепло (по линии 6 – 4 – 1 в Т, s- диаграмме) .

Работа 1 кг пара складывается из работы отдельных потоков (в нашем примере двух): .

Термический КПД регенеративного цикла с одним отбором пара на подогрев питательной воды определяется выражением:

. (4.53)

Независимо от давления пара в регенеративном отборе некоторая часть работы турбины совершается без потерь теплоты парообразования в конденсаторе, а с использованием ее в регенеративном подогревателе. Теоретически тепло той доли пара, которая идет в регенеративный отбор, используется в цикле на 100 %. Поэтому термический КПД регенеративного цикла выше, чем цикла Ренкина без регенерации.

С увеличением числа отборов термический КПД возрастает. Учитывая, однако, сложность и удорожание установки, число регенеративных отборов выбирают в пределах 5 – 10.

Значение регенеративного цикла становится наиболее существенным при высоком начальном давлении пара, когда затраты тепла на нагревание воды растут, а на парообразование – уменьшаются. В этом случае применение регенеративного подогрева питательной воды приводит к увеличению термического КПД до 10 – 12 %.

Разберем еще один способ повышения эффективности использования
тепла, применяемый в теплофикационных циклах.

В установках, работающих по циклу Ренкина, значительная часть тепла q2 отводится холодному источнику. Снижением конечного давления р2 добиваются некоторого уменьшения тепла q2, отводимого в конденсаторе, что приводит к увеличению термического КПД цикла. Однако при малых давлениях р2, поддерживаемых в современных установках на уровне 0,03 – 0,05 бар, температура конденсации пара имеет значения 24 – 32 °С. Использование теплоты конденсации с таким низким температурным потенциалом становится экономически нецелесообразным.

Стремление использовать тепло q2, отдаваемое конденсирующимся паром, приводит к необходимости повышения давления, а следовательно, и температуры конденсации. При этом неизбежно снижается термический КПД цикла, уменьшается работа цикла l, идущая на выработку электроэнергии (рис. 4.29). Вместе с тем представляется возможность получения больших количеств тепла для технологических и бытовых нужд. В установке, таким образом, осуществляется комбинированная выработка электроэнергии и тепла.

Цикл такой установки называется теплофикационным, а электростанции, вырабатывающие электроэнергию и тепло, называются теплоэлектроцент-ралями.

Эффективность теплофикационного цикла можно оценивать коэффициентом использования тепла

. (4.54)

Поскольку в любом обратимом цикле l + q2 = q1, то теоретически K = 1. На практике величина К всегда меньше единицы из-за наличия потерь тепла в котлоагрегате и паропроводе, механических и электрических потерь в турбине и генераторе.

Цикл холодильной установки

Холодильными установками называют устройства, предназначенные для понижения температуры тел и поддержания ее на заданном уровне. Вырабатываемый ими искусственный холод находит все более широкое применение в химической и пищевой промышленности, в строительстве, торговле, транспорте, в системах кондиционирования воздуха и других отраслях промышленности и коммунального хозяйства.

В настоящее время используются различные типы холодильных установок – воздушные, парокомпрессорные, пароэжекторные, абсорбционные, термоэлектрические, которые отличаются как по роду рабочего тела, так и по принципу действия. Наиболее распространенные парокомпрессорные холодильные установки используют в качестве рабочего тела (хладагента) вещества, имеющие низкие температуры кипения, например аммиак, фреоны. Принципиальная схема такой установки представлена на рис. 4.30, а T, s-диаграмма осуществляемого в ней обратного цикла – на рис. 4.31.

Ошибка! Ошибка связи. Ошибка! Ошибка связи.

Рис. 4.30 Рис. 4.31

В компрессоре 1 сухой пар хладагента адиабатно сжимается (1 – 2) до давления р2 и направляется в конденсатор 2. Здесь происходят охлаждение и конденсация рабочего тела за счет отвода тепла q1 циркулирующей водой. Жидкость дросселируется от давления p2 до давления р1 в дросселе 3. Процесс дросселирования 3 – 4 протекает при неизменной энтальпии h3 = h4. В точке 4 получается парожидкостная смесь, которая следует в испаритель 4, где за счет подвода тепла q2 происходит испарение жидкой фазы хладагента (4 – 1).

Работа, затрачиваемая на осуществление обратного цикла, l = q1 – q2. Количество отведенного в цикле тепла q1 = h2 – h3.

Подведенное к рабочему телу в испарителе тепло q2 является одновременно теплом, которое с каждым циклом отводится от охлаждаемого объекта и называется удельной хладопроизводительностью установки, кДж/кг: q2 = h1 – h4. Поскольку h3 = h4, то l = h1 – h2.

Теоретический холодильный коэффициент установки

Читайте также:  Деньги как способ меры

. (4.55)

Значения ε находятся в пределах 3 – 5, т. е. количество вырабатываемого холода в несколько раз больше затрат работы.

Источник

Способы повышения экономичности паросилового цикла

Для просмотра сайта используйте Internet Explorer

Тема 8. ПАРОСИЛОВЫЕ УСТАНОВКИ

8.1.Принципиальная схема паросиловой установки

Преобразование энергии органического или ядерного топлива в механическую при помощи водяного пара осуществляется в паровых силовых установках (п. с. у.), которые являются базой современной крупной энергетики. Принципиальная схема простейшей паросиловой установки показана на рис. 8.1.

В паровом котле 1 вода превращается в перегретый пар с параметрами p1, t1, i1, который по паропроводу поступает в турбину 2, где происходит его адиабатное расширение до давления p2 с совершением технической работы, приводящей во вращательное движение ротор электрического генератора 3. Затем пар поступает в конденсатор 4, который представляет собой трубчатый теплообменник. Внутренняя поверхность трубок конденсатора охлаждается циркулирующей водой.

В конденсаторе при помощи охлаждающей воды от пара отнимается теплота парообразования и пар переходит при постоянных давлении р2 и температуре t2 в жидкость, которая с помощью насоса 5 подаётся в паровой котёл 1. В дальнейшем цикл повторяется.

На рис. 8.2 приведена схема паровой турбины. Турбинные установки предназначены для преобразования энергии рабочего тела (пара, газа), имеющего высокое давление и температуру, в механическую энергию вращения ротора турбины. Турбины используют в качестве двигателей электрогенераторов, турбокомпрессоров, воздуходувок, насосов.

Водяной пар с высоким давлением и температурой поступает в сопло 1, при истечении из которого его давление снижается, а кинетическая энергия увеличивается. Струя пара направляется на закреплённые на диске 3 ротора турбины лопатки 2, отдавая им часть своей кинетической энергии, которая через лопатки передаётся вращающемуся ротору.

Обычно турбина имеет несколько сопел, составляющих сопловый аппарат. Рабочие лопатки расположены по всей окружности диска и образуют рабочую решётку. Сопловый аппарат и рабочая решётка составляют ступень турбины, а каналы для прохода газа — проточную часть турбины.

Турбины бывают одноступенчатые и многоступенчатые, активного и реактивного типов.

В активных турбинах процесс расширения пара происходит только в соплах, а в реактивных — в соплах и в каналах рабочих лопаток.

8.2.Цикл Ренкина

В паросиловых установках применяют цикл Ренкина. В цикле Ренкина охлаждение влажного пара в конденсаторе производится до превращения его в воду.

Различают цикл Ренкина с сухим насыщенным паром и с перегретым паром (рис. 8.3). В цикле Ренкина с сухим насыщенным паром сухой насыщенный пар с параметрами p1, T1, i1 поступает из парового котла в турбину (точка 1 на рис. 8.3), где адиабатно расширяется от давления p1 до давления p2 (точка 2). После турбины влажный насыщенный пар с параметрами p2, T2, i2 поступает в конденсатор, где полностью конденсируется при постоянных давлении и температуре (точка 3). Питательная вода с помощью насоса сжимается до давления p1, равного давлению в паровом котле, и подаётся в котёл (точка 4). Параметры воды на входе в котёл – p1, T2, i4. В паровом котле питательная вода смешивается с кипящей водой, нагревается до температуры кипения и испаряется

Цикл Ренкина состоит из следующих процессов:

4′-1 – процесс парообразования в котле при постоянном давлении;

1-2 – процесс адиабатного расширения пара в турбине;

2-3 – процесс конденсации влажного пара в конденсаторе с отводом теплоты с помощью охлаждающей воды;

3-4 – процесс адиабатного сжатия воды в насосе от давления p2 до давления p1;

4-4’ – процесс подвода теплоты к воде при давлении p1 в паровом котле до соответствующей этому давлению температуры кипения.

Термический к. п. д. цикла

Теплота q1 в цикле подводится в процессах: 4-4’ – подогрев воды до температуры кипения в котле; 4′-1 – парообразование в котле. Для 1 кг пара q1 в изобарном процессе равно разности энтальпий конечной (точка 1) и начальной (точка 4) точек процесса подвода тепла:

.

Отвод теплоты q2 происходит в конденсаторе по изобаре 2-3, следовательно

.

Подставив (8.2) и (8.3) в (8.1), получим

.

.

Термический к. п. д. цикла Ренкина меньше термического к. п. д. цикла Карно при одинаковых начальных и конечных параметрах пара, так как в цикле Карно теплота q1 затрачивается только на процесс парообразования (то есть q1≈r), а в цикле Ренкина она затрачивается как на парообразование, так и на подогрев питательной воды в процессе 3-4. Поэтому для паросиловых установок в заданном температурном интервале термодинамически наиболее выгодным циклом мог бы быть цикл Карно. Однако его осуществление связано с большими трудностями. Цикл Карно относительно проще было бы осуществить в области влажного пара. Это объясняется тем, что в области влажного пара изотермические процессы совпадают с изобарными и могут быть реально осуществлены в котле и конденсаторе. Однако в цикле Карно конденсация пара в изотермическом процессе происходит не полностью, вследствие чего в последующем адиабатном процессе сжимается не вода, как в цикле Ренкина, а влажный пар, имеющий относительно большой объем.

В цикле Ренкина с перегретым паром добавляется ещё один процесс: 1-1’ – перегрев пара.

8.3.Влияние параметров пара на термический к. п. д. цикла Ренкина

Анализ термического к. п. д. цикла Ренкина показывает, что термический к. п. д. паросиловой установки возрастает при увеличении начального давления p1 и начальной температуры пара t1.

При увеличении температуры пара на выходе из котлоагрегата (давление пара не изменяется) увеличивается i1. Если остальные энтальпии, входящие в выражение (8.5), неизменны, что технически осуществимо, то, как следует из (8.5), увеличение температуры пара на выходе из котлоагрегата сопровождается ростом ηt.

При увеличении давления пара на выходе из котлоагрегата (температура перегретого пара не изменяется) уменьшается i1 (смотри таблицы термодинамических свойст воды и перегретого пара). Если остальные энтальпии, входящие в выражение (8.5), неизменны, что технически осуществимо, то, как следует из (8.5), увеличение давления перегретого пара на выходе из котлоагрегата сопровождается уменьшением ηt. Следовательно, давление на выходе котлоагрегата целесообразно повышать только с целью увеличения температуры пара.

8.4.Пути повышения экономичности паросиловых установок

Несмотря на то, что в настоящее время осуществляется массовое освоение высоких и сверхвысоких параметров пара (p1=23,0÷30,0 МПа; t1= 570÷600 0 С), термический к. п. д. цикла Ренкина не превышает 50%. В реальных установках доля полезной использованной теплоты еще меньше из-за потерь, связанных с внутренней необратимостью процессов. В связи с этим были предложены другие способы повышения тепловой эффективности паросиловых установок.

.

Одним из таких способов является промежуточный перегрев пара (рис. 8.4). Здесь пар перегревается в пароперегревателе 2 парогенератора 1 и подаётся в цилиндр высокого давления 3, в котором находятся ступени турбины, рассчитанные на пар с высоким давлением. В цилиндре высокого давления пар производит механическую работу, его давление и температура снижаются. Из цилиндра высокого давления пар направляют в промежуточный пароперегреватель 4, где его температуру повышают, передавая ему некоторое количество тепла q1. Из промежуточного пароперегревателя пар направляют в цилиндр низкого давления 5, где он производит механическую работу, снижая своё давление и температуру до давления и температуры конденсатора 7. Из конденсатора насосом 8 конденсат подаётся в парогенератор. Цилиндры низкого и высокого давления находятся на одном валу с электрогенератором 6.

Количество тепла q2 отдаваемое паром в конденсаторе, остаётся постоянным, а количество тепла q1, сообщаемое пару в котлоагрегате увеличивается на q1, подводимое к пару в промежуточном пароперегревателе. Поэтому в соответствии с (8.1) термический к. п. д. паросиловой установки с промежуточным пароперегревателем выше, чем у паросиловой установки без промежуточного пароперегревателя. Увеличение термического к. п. д. в этом случае не превышает 2-3%.

Более эффективным способом повышения термического к. п. д. паросиловой установки является применение схем регенеративного подогрева питательной воды (рис. 8.5).

Для получения такой схемы устанавливают подогреватель питательной воды 9 и организуют дополнительный отбор пара. Например, из цилиндра низкого давления. В этом случае пар, отбираемый на подогрев питательной воды, не отдает тепло в конденсаторе, и количество теплоты, теряемой в конденсаторе, уменьшается на некоторую величину q2. Поэтому в соответствии с (8.1) термический к. п. д. паросиловой установки повышается. Однако, в связи с тем, что часть пара, направляемого на подогрев питательной воды, не производит механическую работу на последующих ступенях турбины, мощность отдаваемая турбиной электрогенератору в этом случае снижается.

Регенеративный подогрев питательной воды позволяет увеличить термический к. п. д. паросиловой установки процентов на 10-12.

Источник

Читайте также:  Клей steel epoxy e350 способ применения
Оцените статью
Разные способы