Способы построения сечений многогранников 10 класс

Построение сечений многогранников. Урок 10 класс.
методическая разработка (геометрия, 10 класс) по теме

Методическая разработка состоит из развернутого конспекта урока, презентации, карточек для организации самостоятельной работы учащихся и рабочего листа к уроку. Учебно-методическое обеспечение: Атанасян Л.С. и др. Геометрия 10-11 класс.

Скачать:

Вложение Размер
sechenie.zip 2.05 МБ

Предварительный просмотр:

Построение сечений многогранников

Учебно-методическое обеспечение: Атанасян Л.С. и др. Геометрия 10-11 класс.

Оборудование и материалы для урока : компьютер, проектор, экран, презентация для сопровождения урока, раздаточный материал учащихся.

Цель урока: углубление, обобщение, систематизация, закрепление полученных знаний и развитие их в перспективе (изучить метод следов)

1. Сформировать у школьников мотивацию к изучению данной темы.

2. Развивать у учащихся умение пользоваться опорными знаниями, для получения новых знаний.

3. Развивать у учащихся мышление (умение выделять существенные признаки и делать обобщения).

4. Развивать у учащихся навыки творческого подхода к решению задач и навыки исследовательской работы над задачей.

Знания, умения, навыки и качества, которые закрепят ученики в ходе урока:

  • умение пользоваться опорными знаниями, для получения новых знаний;
  • умение выделять существенные признаки и делать обобщения;
  • навыки творческого подхода к решению задач на построение сечений

1. Сформирование у школьников мотивации к изучению данной темы.

2. Проверка домашнего задания. Исторические сведения.

3. Повторение опорных знаний (аксиоматика, способы задания плоскости).

4. Применение знаний в стандартной ситуации.

5. Изучение и закрепление нового материала: метод следов.

6. Самостоятельная работа.

7. Подведение итога урока.

8. Домашнее задание.

Ход урока: I этап – Вводная беседа.

Проверка домашнего задания. (6-7 мин)

Формы и методы работы

Вводная беседа (1 мин)

2. Проверка домашнего задания

Комментирует мини-выступления учащихся

Слушают выступления товарищей, задают вопросы

II этап – Актуализация знаний (10 мин)

(повторение теоретического материала)

Формы и методы работы

1. Повторение аксиом стереометрии

Работа по готовым слайдам (фронтальный опрос учащихся)

Устные ответы на вопросы учителя

2. Повторение: взаимное расположение в пространстве прямых и плоскостей

3. Обобщение теории

Вывод о способах задания плоскости

Запись вывода в тетрадь

4. Повторение понятия многогранника и сечения многогранника плоскостью

Устные ответы на вопросы учителя

III этап – Применение знаний в стандартной ситуации(6-7 мин)

(работа по готовым чертежам)

Формы и методы работы

Решение типовых задач по готовым чертежам (каждому ученику выдается рабочий листок с условием задачи и чертежом для построения сечения).

Объяснение предстоящей работы.

Совместное решение первой задачи (подробное комментирование шагов решения и записи оформления в рабочий лист).

Изучение условия задачи, работа по готовым чертежам, с последующим разбором решения по слайдам.

IV этап – Свойства параллельных плоскостей (6 мин)

Формы и методы работы учителя

Виды деятельности учащихся

1. Повторение темы «Параллельность плоскостей».

2. Решение задач

Работа по готовым слайдам (фронтальный опрос учащихся)

Проверка правильности выполнения задания

Устные ответы на вопросы учителя

Построение сечений в рабочем листе.

V этап — Выход на получение новых знаний: «Метод следов»(6 мин)

Формы и методы работы

1. Изучение нового материала

2. Закрепление нового материала

Объяснение нового материала. Показ учебного фрагмента учебного фильма «Как построить сечение куба?»

Работа по готовым чертежам у доски (с последующим комментированием этапов построения сечения по слайду)

Слушают объяснение учителя. Просмотр учебного фильма. Анализ видеофрагм., запись образца решения.

Двое учащихся решают у доски, остальные в рабочем листе

VI этап — Самостоятельная работа (4-5 мин)

Формы и методы работы

Самостоятельная работа обучающего характера

Объяснение предстоящей работы.

Проверка выполнения задания.

Выполнение самостоятельной работы (по готовым чертежам).

Самопроверка по готовым слайдам.

VII этап – подведение итогов урока (4 мин)

Формы и методы работы

1. Подведение итогов

2. Творческое домашнее задание

Беседа по итогам урока с использованием слайдов

Проецируется на экран

Устные ответы на вопросы учителя

Запись в дневники

  1. Вступительная беседа. Исторические сведения.

Учитель : Здравствуйте, ребята! Тема нашего урока «Построение сечений многогранников на основе аксиоматики». На уроке мы обобщим и систематизируем пройденный теоретический материал, и применим его к практическим задачам на построение сечений, с выходом на новый более сложный уровень трудности задач.

Главная цель нашего урока в углублении, систематизации, закреплении полученных знаний и развитии их в перспективе .

В качестве домашнего задания вам было предложено написание рефератов или небольших выступлений об истории развития геометрии, о жизни великих математиков, об их знаменитых открытиях и теоремах. Доклады и рефераты получились очень интересные, но на уроке мы заслушаем только три мини-выступления, отвечающие на вопрос, что изучает стереометрия, как возникла и развивалась и где находит своё применение?

1 ученик. Понятие стереометрии, что изучает. (2 мин)

2 ученик. Евклид – основоположник геометрии, греческая архитектура. (2 мин)

3 ученик. Математическая теория живописи. «Золотое сечение» — формула совершенного человеческого тела по Леонардо да Винчи. (2 – 3 мин)

В стереометрии изучаются красивые математические объекты. Их формы находят своё применение в искусстве, архитектуре, строительстве. « Не случайно говорят, что пирамида Хеопса – немой трактат по геометрии, а греческая архитектура – внешнее выражение геометрии Евклида», — писал архитектор Корбюзье.

Прошли века, но роль геометрии не изменилась. Она по прежнему остается «грамматикой архитектора». Геометрические формы находят своё применение в искусстве, архитектуре, строительстве.

Математическая теория живописи – это теория перспективы, представляющая, по словам Леонардо да Винчи, «тончайшее исследование и изобретение, основанное на изучении математики, которое силой линий заставляло казаться отдаленным то, что близко, и большим то, что невелико». Развернувшееся в эпоху Возрождения строительство инженерных сооружений возродило и расширило применявшиеся в античном мире приёмы проекционных изображений. Архитекторы и скульпторы встали перед необходимостью создания учения о живописной перспективе на геометрической основе. Многочисленные примеры построения перспективных изображений имеются в работах гениального итальянского художника и выдающегося ученого Леонардо да Винчи. Он впервые говорит о сокращении масштаба разных отрезков удаляющихся в глубь картины, кладет начало панорамной перспективе, указывает правила распределения теней, высказывает уверенность в существовании некой математической формулы красоты отношения размеров человеческого тела – формулы «золотого сечения».

Таким образом мы плавно подошли к теме нашего урока, и мостиком в его следующий этап будут слова Леонардо да Винчи :

«Те, кто влюбляются в практику без теории, уподобляются мореплавателю, садящемуся на корабль без руля и компаса и потому никогда не знающему, куда он плывет».

Это высказывание определяет следующий этап нашего урока: повторение теоретического материала.

II. Актуализация знаний (повторение теоретического материала)

2.1. Аксиомы стереометрии (таблицы остаются учащимся для работы).

В ходе беседы выделяются существенные моменты теории:

а) разъяснить содержание аксиом и иллюстрировать на модели;

б) чтение учащимися текста аксиом;

в) выполнение чертежа;

г) запись содержания с помощью символов.

2.2. Следствия из аксиом стереометрии.

2.3. Взаимное расположение в пространстве прямых и плоскостей.

а) двух прямых (прямые параллельны, пересекаются, скрещиваются)

б) прямой и плоскости (прямая лежит в плоскости, пересекает плоскость, параллельна плоскости)

в) двух плоскостей (плоскости пересекаются либо параллельны).

В ходе беседы выделяются существенные моменты теории:

а) Признак параллельности прямой и плоскости: Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.

б) Признак параллельности плоскостей: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

Учитель: Обобщая все сказанное, приходим к выводу о способах задания плоскости.

2.5. Понятие многогранников. Сечение.

Многогранником называется тело, ограниченное конечным числом плоскостей. Поверхность многогранника состоит из конечного числа многоугольников.

Многоугольник, полученный при пересечении многогранника и плоскости, называется сечением многогранника указанной плоскостью .

III. Применение знаний в стандартной ситуации.

Используя полученные знания, применим их к построению сечений многогранников на основе аксиоматики.

Примеры и их решение приводят учащиеся (под руководством учителя).

IV. Построение сечений с использованием свойств параллельных плоскостей.

Учитель: Для решения следующей группы задач нам необходимо повторить свойства параллельных плоскостей.

V. Выход на получение новых знаний: «Метод следов».

Просмотр учебного фильма.

Электронное издание «1С: Школа. Математика, 5-11 кл. Практикум»

Применение полученных знаний (решение учащимися двух задач у доски с последующим просмотром правильного решения и записи оформления).

VI — Самостоятельная работа

с последующей взаимопроверкой (по слайду с готовым решением).

VII. Подведение итогов урока

  1. Что нового вы узнали на уроке?
  2. Каким образом строится сечение тетраэдра?
  3. Какие многоугольники могут быть сечением тетраэдра?
  4. Какие многоугольники могут получиться в сечении параллелепипеда?
  5. Что вы можете сказать о методе следов?

Творческое домашнее задание. Составить две задачи на построение сечений многогранников с использованием полученных знаний.

Прототипом данного урока послужил авторский урок Легкошур Ирины Михайловны, изменения дополнения и презентация к уроку выполнены с её разрешения в 2008 г. Ссылка: http://www.edu.yar.ru/russian/pedbank/sor_uch/math/legcosh/work.html

  1. Атанасян Л.С. и др. Геометрия 10-11 класс. Учебное пособие.
  2. Электронное издание «1С: Школа. Математика, 5-11 кл. Практикум»
  3. Электронное издание « Решебник по геометрии. Пособие для абитуриентов . Полный курс за 7-11 классы»

Источник

Методы построения сечений многогранников

Разделы: Математика

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

  1. Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  2. В задачах используются в основном простейшие многогранники.
  3. Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  • что значит построить сечение многогранника плоскостью;
  • как могут располагаться относительно друг друга многогранник и плоскость;
  • как задается плоскость;
  • когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

  • тремя точками;
  • прямой и точкой;
  • двумя параллельными прямыми;
  • двумя пересекающимися прямыми,

построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

Существует три основных метода построения сечений многогранников:

  1. Метод следов.
  2. Метод вспомогательных сечений.
  3. Комбинированный метод.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

  • построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

В федеральный перечень учебников по геометрии для 10-11 класов входят учебники авторов:

  • Атанасяна Л.С., Бутузова В.Ф., Кадомцева С.Б. и др (Геометрия, 10-11);
  • Погорелова А.В. (Геометрия, 7-11);
  • Александрова А.Д., Вернера А.Л., Рыжик В.И. (Геометрия, 10-11);
  • Смирновой И.М. (Геометрия, 10-11);
  • Шарыгина И.Ф. (Геометрия, 10-11).

Рассмотрим подробнее учебники Л.С, Атанасяна и Погорелова А.В.

В учебнике Л.С. Атанасяна на тему “Построение сечений многогранников” выделено два часа. В 10 классе в теме “Параллельность прямых и плоскостей” после изучения тетраэдра и параллелепипеда отводится один час на изложение параграфа “Задачи на построение сечений”. Рассматриваются сечения тетраэдра и параллелепипеда. И тема “Параллельность прямых и плоскостей” завершается решением задач на одном или двух часах (всего задач на построение сечений в учебнике восемь).

В учебнике Погорелова А.В. на построение сечений отводится около трех часов в главе “Многогранники”: один – на изучение темы “Изображение призмы и построение ее сечений”, второй – на изучение темы “Построение пирамиды и ее плоских сечений” и третий – на решение задач. В списке задач, приведенных после темы, задач на сечение насчитывается всего около десяти.

Мы предлагаем систему уроков по теме “Построение сечений многогранников” для учебника Погорелова А.В.

Материал предлагается расположить в той последовательности, в какой он может применяться для обучения учащихся. Из изложения темы “Многогранники” предлагается исключить следующие параграфы: “Построение сечений призмы” и “Построение сечений пирамиды” с тем, чтобы систематизировать данный материал в конце этой темы “Многогранники”. Классифицировать его по тематике задач с примерным соблюдением принципа “от простого к сложному” можно весьма условно следующим образом:

  1. Определение сечения многогранников.
  2. Построение сечений призмы, параллелепипеда, пирамиды методом следов. (Как правило в школьном курсе стереометрии используются задачи на построение сечений многогранников, решаемые основными методами. Остальные методы, в связи с их более высоким уровнем сложности, учитель может оставить для рассмотрения на факультативных занятиях или на самостоятельное изучение. В задачах на построение основными методами требуется построить плоскость сечения, проходящую через три точки).
  3. Нахождение площади сечений в многогранниках (без использования теоремы о площади ортогональной проекции многоугольника).
  4. Нахождение площади сечений в многогранниках (с применением теоремы о площади ортогональной проекции многоугольника).

СТЕРЕОМЕТРИЧЕСКИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ И МЕТОДИКА ИХ ИСПОЛЬЗОВАНИЯ НА УРОКАХ В 10-11 КЛАССАХ.

(система уроков и факультативных занятий по теме “Построение сечений многогранников”)

Тема урока: “Построение сечений многогранников”.

Цель урока: ознакомление с методами построений сечений многогранников.

Источник

Читайте также:  Экологические группы организмов по способу питания
Оцените статью
Разные способы