Способы построения разверток пирамиды

Глава 11. Метрические задачи

Глава 11 Общие сведения Определение истинной величины расстояний Определение истинной величины углов Определение истинной величины плоской фигуры Построение разверток поверхностей Развертки пирамидальных и конических поверхностей Развертки призматических и цилиндрических поверхностей Вопросы

§ 73. Развертки пирамидальных и конических поверхностей

Развертки пирамидальных и конических поверхностей строят способом триангуляции (способом треугольников). Построение разверток этих поверхностей сводится к многократному построению истинных величин треугольников, из которых состоит поверхность развертываемой пирамиды или которой заменяют развертываемую коническую поверхность.

На рис. 148 построена полная развертка пирамиды SABC, усеченной фронтально проецирующей плоскостью Σ(Σ2).

Сначала нужно построить развертку боковой поверхности всей пирамиды (фигуру S С А В С), состоящую из натуральных величин боковых граней. Для этого необходимо определить истинную величину боковых ребер. На рис. 148 истинная величина ребер AS, BS, CS построена способом прямоугольного треугольника. В данном случае одним катетом взято превышение точки S над точками А, В и С, а вторым катетом — горизонтальная проекция соответствующего ребра. Гипотенузы S2C*, S2B* и дают истинную величину боковых ребер. Основание пирамиды расположено горизонтально, поэтому на плоскости П1 имеем истинную величину и самого основания ∆АВС, и его сторон АВ, ВС, АС.

Каждая боковая грань на развертке строится как треугольник по трем сторонам. CS — самое короткое боковое ребро, поэтому рациональнее мысленно разрезать пирамиду по этому ребру.

Для нанесения на развертку точек D, E и F, соответствующих вершинам сечения пирамиды плоскостью Σ, нужно определить истинные расстояния этих точек от вершины S. После построения развертки боковой грани поверхности усеченной части пирамиды нужно пристроить к ней треугольники A B C и D E F, дающие истинную величину основания и сечения пирамиды.

На рис. 149 способом триангуляции построена развертка конической поверхности, которая заменена поверхностью вписанной в нее двенадцатиугольной пирамиды. Развертка представляет собой симметричную фигуру, так как поверхность имеет плоскость симметрии Σ. В этой плоскости лежит самая короткая образующая S-6. По ней и сделан разрез поверхности. Самая длинная образующая S-0 является осью симметрии развертки поверхности.

Натуральные величины образующих определены с помощью прямоугольных треугольников, как в предыдущей задаче на рис. 149. От оси симметрии S-0 строим шесть в одну сторону и шесть в другую сторону примыкающих друг к другу треугольников с общей вершиной S. Каждый из треугольников строим по трем сторонам, при этом две стороны равны истинным величинам образующих, а третья хорде, стягивающей дугу окружности основания между соседними точками деления. Построенные на развертке точки 0, 1, 2, . соединяются.

Читайте также:  Материнские платы способы ремонта

Построение развертки значительно упрощается, если поверхность представлена прямой пирамидой правильной формы или прямым круговым конусом. На рис. 150 приведена развертка четырехгранной прямой пирамиды.

Построение ее упрощается тем, что образующие пирамиды AS и CS параллельны фронтальной плоскости проекций и на нее спроецировались в натуральную величину. Основание же пирамиды ABCD лежит в плоскости, параллельной горизонтальной плоскости проекций, и на нее проецируется в натуральную величину. Для построения развертки достаточно построить стороны AS и сделать засечки радиусом дуги, равным BS и АВ из точек S и А соответственно, получим точку В и т. д. Основание же в натуральную величину можно построить на базе одной из его сторон (на рис. 150 — на базе стороны АВ). Положение точки на поверхности развертки пирамиды определим в следующем порядке: через фронтальную проекцию точки М (М2) проведем горизонтальную линию до пересечения с ребрами А2S2 и B2S2. Получим точки 11 и 22. На линии AS развертки от точки А отложим отрезок h и из полученной точки 1 проведем линию 1, 2 параллельно AD, на которой нанесем точку М в том положении, которое она занимает на горизонтальной проекции линии 1, 2.

На рис. 151 приведен пример построения развертки прямого кругового конуса. Для построения ее используем то, что очерковая образующая конуса l на фронтальной плоскости изобразилась в натуральную величину. Выбрав положение вершины развертки — точку S, радиусом L проводим дугу и откладываем на ней 12 равных частей, на которые предварительно разделили окружность основания конуса, изображенного на горизонтальной плоскости проекции в натуральную величину. Чем на большее количество равных участков разделим окружность, тем точнее построим развертку.

Положение точки М на развертке поверхности конуса определим следующим образом: через фронтальную проекцию точки проведем образующую и построим горизонтальную ее проекцию. Найдем, что образующая пересекла основание конуса между точками 5 и 6. Точку К переносим на дугу развертки, расположив ее между точками 5 и 6, и соединим с вершиной конуса развертки S. Из точки М2 проведем горизонтальную линию до пересечения с очерковой образующей L и получим точку М2. Расстояние от основания конуса до точки М2 по образующей является высотой точки, которую откладываем на развертке от точки К на линии KS. Полученная точка определит истинное положение точки М на развертке.

Таким образом, развертку конической поверхности построим с помощью соседних точек окружности основания, в которую вписан правильный двенадцатиугольник, т. е. коническая поверхность условно заменена поверхностью, вписанной правильной двенадцатиугольной пирамидой, а для построения развертки применен способ триангуляции.

Читайте также:  Способы толкования нормы права тгп

© Красноярский государственный аграрный университет
© Управление информационных технологий
© Кафедра Технологии машиностроения

Источник

Лекция 6. Многогранники

6.1. Пирамида. Сечение пирамиды плоскостью. Развертка пирамиды

Многогранником называется тело, ограниченное плоскими многоугольниками, которые называется гранями.

Грани, пересекаясь, образуют ребра .
Ребра, пересекаясь, образуют вершины .
Рассмотрим два основных вида многогранников:

Пирамида – многогранник, у которого боковыми гранями являются треугольники, а основанием – многоугольник.

Упражнение

Дана пирамида, основание которой параллельно π1. Основание представляет собой некоторый треугольник.

S – вершина пирамиды (Рисунок 6.1).

Рисунок 6.1 – Пересечение поверхности пирамиды прямой

Требуется построить точки пересечения прямой m общего положения с поверхностью пирамиды.

  1. Вводим через прямую вспомогательную секущую плоскость σ∈m и σ⊥π2.
  2. Строим сечение ∆ (123) поверхности пирамиды с плоскостью σ.

Решение задачи сводится к нахождению линии пересечения плоскостей общего положения (боковые грани пирамиды) и плоскости частного положения (плоскость σ).

Примечание. При наличии круто падающих рёбер (близких к вертикали), построение недостающей проекции точки на ребре по одной данной проекции необходимо выполнять при помощи пропорционального деления отрезка.

  1. В сечении находим точки M и N принадлежащие прямой m.
  2. Определяем видимость прямой m.

Развёрткой многогранника называется фигура, полученная в результате последовательного совмещения граней многогранника с плоскостью.

Развёртка всегда строится наружной (лицевой) стороной к наблюдателю.

Для построения развёртки пирамиды нужно определить истинные величины всех рёбер пирамиды и построить грани пирамиды в виде треугольников, последовательно присоединяя их друг к другу.

Основание можно присоединить к любой грани, например, АС (Рисунок 6.2).


Рисунок 6.2 – Построение развёртки пирамиды

В упражнении истинные значения ребер определены способом вращения. Для построения линии сечения на развертке, на истинных величинах рёбер построим точки \overline<1>,\overline<2>,\overline <3>, проведя горизонтальные линии (траектории перемещения точек 1, 2, 3) до пересечения с соответствующими истинными проекциями ребер.

6.2. Призма. Развертка призмы

Призма – многогранник, у которого боковыми гранями являются параллелограммы, а основания – многоугольники, лежащие в параллельных плоскостях.

Упражнение

Дана призма, основания которой параллельны плоскости проекций π1.

Требуется построить точки пересечения прямой m с поверхностью призмы (Рисунок 6.3).

Рисунок 6.3 – Построение «точек встречи» прямой с поверхностью наклонной призмы

  1. Вводим через прямую вспомогательную секущую плоскость σ∈m и σ⊥π2.
  2. Строим сечение поверхности призмы с плоскостью σ →(∆(123)).
  3. В сечении находим точки K и L принадлежащие прямой m.
  4. Определяем видимость прямой m. Если грань АВ на π2 видна, то точка К на π2 видима, грань ВС невидима, следовательно, точка Lневидима.

Рассмотрим наклонную призму. Пусть основание призмы параллельно π1, а ребра параллельны π2.

Читайте также:  Лайснер шампунь способ применения

Построим нормальное сечение, то есть сечение плоскостью σ, перпендикулярной ребрам призмы (Рисунок 6.4).

Это сечение развернется в прямую линию. Боковые ребра перпендикулярны к линии сечения.


Рисунок 6.4 – Построение развёртки призмы
Порядок построения :

  1. Найдем истинную величину сечения – (102030), для чего повернём сечение (123) вокруг оси n⊥π2, (можно ввести ДПП π3//σ).
  2. Проведём горизонтальную линию на свободном месте листа. Отложим на ней отрезки:
    /10-20/; /20-30/; /30-10/.
  1. Проведём направления рёбер перпендикулярно этой линии через точки: 10; 20; 30 и отмерим вверх и вниз расстояния от нормального сечения (на π2) до верхнего и нижнего основания, откладывая их на линиях-ребрах.

6.3. Взаимное пересечение многогранников

В результате пересечения многогранников получим ломаную линию.

Возможны два случая пересечения многогранников (Рисунок 6.5):


Рисунок 6.5 – Варианты пересечения многогранников

Вершины ломаной – точки пересечения рёбер одного многогранника с гранями другого.

Звенья ломаной – линии пересечения граней.

Для решения задачи нужно найти вершины ломаной, то есть точки пересечения всех рёбер, участвующих в пересечении.

Построенные точки соединить.

Упражнение

Построить линии пересечения призмы с пирамидой (Рисунок 6.6).

Рисунок 6.6. Построение линии пересечения призмы с пирамидой
Решение

  1. Находим на π2 проекции точек пересечения ребра пирамиды с проецирующими гранями призмы (точки 12 и 22). Находим их горизонтальные проекции.
  2. Строим точки пересечения ребра призмы с боковыми гранями пирамиды (точки 32 и 42), для чего используем вспомогательную плоскость τ⊥π2.
  3. Полученные на π1 точки 3, 2, 4, 1 соединяем отрезками прямых. Причем отрезки 11-31, 11-21, 11-41 невидимы. Получили замкнутую линию пересечения пирамиды с призмой.

Упражнение

остроить три проекции пирамиды с вырезом и развертку (Рисунок 6.7).

  1. По двум проекциям построить третью;
  2. На всех трех проекциях построить проекции линии пересечения призматического выреза с пирамидой;
  3. Невидимые участки линии пересечения и участки рёбер многогранников показывать штриховой линией;
  4. Построить развёртку пирамиды с нанесением линии пересечения.


Рисунок 6.7. Построение проекций пирамиды с вырезом и развертки
Решение :

  1. Проводим линии рёбер призмы на всех проекциях.
  2. Введём плоскость σ⊥π2, σ//π1:
  • σ//АВС – основанию пирамиды;
  • σ пересекает пирамиду ’ сечение подобно ΔА1В1С1.

Это сечение пересекается:

— с ребром D в двух точках 1 и 4;

— с ребром Е в двух точках 2 и 5.

Соединим найденные точки: 1-2-3-1; 4-6-5-7-4 и определим видимость.

Построение развертки рассмотрено ранее.

6.4. Задачи для самостоятельной работы

1-4. Построить линию пересечения гранных поверхностей. Показать видимость (Рисунки 6.8 – 6.11).


Рисунок 6.8

Рисунок 6.9

Рисунок 6.10

Рисунок 6.11

Источник

Оцените статью
Разные способы