- Построение параллельных прямых
- Изображение параллельных прямых с применением угольника и линейки
- Изображение параллельных прямых с использованием циркуля и линейки
- Изображение параллельной прямой, отдаленной на определенное расстояние от имеющейся
- Прочие способы изображения параллельных прямых
- Не нашли нужную информацию?
- Гарантия возврата денег
- Отзывы студентов о нашей работе
- Урок 45 Бесплатно Параллельные прямые
- Параллельные прямые
Построение параллельных прямых
Для изображения в пространстве прямых, что параллельны друг другу, с использованием разнообразных инструментов опираются на свойства их параллельности.
Изображение параллельных прямых с применением угольника и линейки
Используем принцип изображения параллельной прямой, что пересекает заданную точку, с использованием чертежного угольника и линейки. Рассмотрим порядок действий при этом способе построения. Допустим, изображены прямая a и точка \(M\) , не лежащая на ней:
- Диагональ угольника совмещаем с прямой a, а вдоль его большого катета фиксируем линейку;
- Перемещаем угольник вдоль линейки до того момента, пока диагональ не сравняется с точкой \(M\) ;
- Чертим через точку \(M\) вдоль диагонали угольника прямую \(b\) . Она и будет параллельна существующей прямой \(a\) .
- Параллельность этих прямых подтверждается также равностью углов \(∝\) и \(β\) .
Изображение параллельных прямых с использованием циркуля и линейки
Также широко применяется способ изображения параллельных прямых с применением линейки и циркуля.
Допустим есть прямая и точка \(A\) , не лежащая на ней. Необходимо изобразить прямую, параллельную существующей прямой и пересекающую заданную точку \(A\) .
Часто требуется просто изобразить параллельные прямые без начальных условий. В подобном варианте просто нужно самостоятельно изобразить прямую и поставить точку, не лежащую на этой прямой.
Не нашли что искали?
Просто напиши и мы поможем
Итак, порядок изображения параллельной прямой:
- Выбираем случайную точку на существующей прямой, дадим ей название, например \(B\) . Выбираем совершенно любую точку, это не повлияет на результат;
- С помощью циркуля чертим круг с центром в точке \(B\) и радиусом \(AB\) ;
- Ккруг проходит через прямую в точке, которую назовем \(C\) ;
- Начертим еще один круг радиусом \(AB\) , но уже с центром в точке \(C\) . Стоит заметить, что этот круг должен в любом случае пересечь точку \(B\) , если все выполнено верно;
- Этим же радиусом чертим круг с центром в точке \(A\) ;
- Этот круг пересечет предыдущий в точке, которую назовем \(D\) . Также стоит учесть, что и этот круг при верном построении пересечет точку \(B\) ;
- На данном этапе через точки \(A\) и \(D\) проводим с использованием линейки прямую, она будет параллельна существующей прямой.
В итоге мы имеем две прямые \(BC\) и \(AD\) , параллельные между собой.
Изображение параллельной прямой, отдаленной на определенное расстояние от имеющейся
Для изображения параллельной прямой, относительно имеющейся, на определенном конкретном расстоянии можно использовать угольник и линейку. \(К\) примеру, изображена прямая \(MN\) и задано некое расстояние \(a\) :
- Отмечаем на существующей прямой \(MN\) случайную точку, например назовем ее \(B\) ;
- Теперь необходимо изобразить прямую через точку \(B\) , перпендикулярную изображенной прямой. Назовем ее \(AB\) ;
- Откладываем на построенной прямой отрезок \(BC\) , который равен \(a\) ;
- С использованием линейки и угольника, как описано выше, проведем через точку \(C\) прямую \(CD\) , она будет параллельной к прямой \(MN\) .
Возможно также на прямой \(AB\) отмерить расстояние \(a\) от точки \(B\) в противоположную сторону, проделать все вышеописанное и начертить еще одну прямую параллельно существующей прямой \(MN\) .
Прочие способы изображения параллельных прямых
В чертежной сфере часто применяют способ изображения с использованием рейсшины. Столяры при изготовлении изделий часто используют так называемый инструмент – малку, состоящую из двух планок на шарнирах. Этим инструментом наносят разметку с использованием принципов параллельных прямых.
Не нашли нужную информацию?
Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.
Гарантия низких цен
Все работы выполняются без посредников, поэтому цены вас приятно удивят.
Доработки и консультации включены в стоимость
В рамках задания они бесплатны и выполняются в оговоренные сроки.
Вернем деньги за невыполненное задание
Если эксперт не справился – гарантируем 100% возврат средств.
Тех.поддержка 7 дней в неделю
Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.
Тысячи проверенных экспертов
Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».
Гарантия возврата денег
Эксперт получил деньги, а работу не выполнил?
Только не у нас!
Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока
Гарантия возврата денег
В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы
Отзывы студентов о нашей работе
«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами
Используя «Всё сдал!», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:
Принимаем к оплате
Источник
Урок 45 Бесплатно Параллельные прямые
На этом уроке разберем один из случаев взаимного расположения прямых на плоскости, узнаем, какие прямые называют параллельными.
Дадим представление об основных свойствах и признаках параллельных прямых.
Рассмотрим, с помощью каких инструментов и какими способами можно построить их на плоскости.
Убедимся на примерах в том, что знания о параллельных прямых используются во многих областях нашей жизни.
Параллельные прямые
Из всех известных нам линий самой простой на первый взгляд является прямая линия.
Прямая линия бесконечна, то есть не имеет начала и конца.
Следовательно, изобразить на плоскости мы можем только часть прямой, а общий вид ее мы можем только представить.
Прямую обозначают любой строчной латинской буквой и читают как «прямая а». Но прямая может быть обозначена двумя прописными латинскими буквами, которые располагаются на разных концах прямой, и читают её как «прямая АВ».
Если на прямой отметить точку, то в результате получатся два луча, направленные в разные стороны (как вам уже известно, луч — это часть прямой, ограниченной с одной стороны).
Если на прямой обозначить две точки, то между этими точками образуется отрезок (отрезок — это часть прямой, ограниченной с обоих сторон).
Прямая линия имеет такие характерные особенности:
Через две произвольные точки можно провести прямую и притом только одну.
Через произвольную точку можно провести бесконечное множество прямых.
Две не совпадающие прямые на плоскости или пересекаются, или не пересекаются.
Прямые, лежащие в одной плоскости и непересекающиеся на всем своем протяжении, называются параллельными прямыми.
У меня есть дополнительная информация к этой части урока!
Слово «параллельность» («параллелос») с греческого языка переводится как «идущие рядом».
Термин «параллельность» использовали еще за долго до того, как параллельные прямые приобрели свое определение.
В древности знак для обозначения параллельных прямых имел вид знака, известного нам сегодня, как знак равенства «=».
Например, параллельность прямых а и d записывали так: «а = d».
Но в 1557 году Роберт Рекорд для обозначения равенства ввел знак «равно» в том виде, в котором он сегодня известен нам «=».
Чтобы избежать недоразумений и путаницы, символ параллельности был перевернут вертикально, его стали обозначать «||»
Сейчас параллельность прямых а и d записывают так: «а||d».
Принято считать, что между параллельными прямыми угол равен нулю.
Отрезки, лежащие на параллельных прямых, называются параллельными друг другу.
Отрезки AB и CD параллельны (AB||CD).
Отрезки OM и CD не являются параллельными.
Лучи, лежащие на параллельных прямых, называются параллельными друг другу.
Луч а и b параллельны (а||b).
Аналогично определяется параллельность отрезка и прямой, отрезка и луча, луча и прямой.
Необходимо понимать, что нельзя считать отрезки и лучи параллельными друг другу только за то, что они не пересекаются.
Приведем пример непересекающихся отрезков и лучей, которые вовсе не параллельны друг другу.
Как мы можем заметить, отрезок АВ не пересекает луч (а), но он и не параллелен ему.
Таким образом, отрезки и лучи, лежащие на одной прямой или на параллельных прямых, будут являться параллельными друг другу и этим прямым.
Выясним некоторые признаки и свойства параллельных прямых.
Рассмотрим аксиому параллельности прямых:
(Аксиома — это истинное утверждение, которое не требует доказательств, его принимают как необходимое допущение.)
Через точку, не лежащую на прямой, можно провести только одну прямую, параллельную данной.
Все точки одной параллельной прямой находятся на одинаковом расстоянии от другой прямой, параллельной данной.
Таким образом, расстояние между параллельными прямыми везде одинаково, а длина отрезка перпендикуляра, заключенного между двумя параллельными прямыми, есть расстояние между ними.
Подобную ситуацию можно представить, вспомнив железнодорожный путь (рельсы и шпалы) или шведскую лестницу.
Рассмотрим некоторые признаки параллельных прямых:
1. Если две прямые параллельны третьей прямой, то они между собой параллельны
Если а||с и b||с, то а||b.
2. Если две прямые перпендикулярны третьей, то эти две прямые параллельны друг другу.
Если а⊥с и b⊥с, то а||b.
Перейдем к знакомству со свойствами параллельных прямых.
Свойство — это утверждения обратные признакам.
1. Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и ко второй.
Если c||b и а⊥с, то а⊥b.
2. Если несколько параллельных прямых пересечь прямой, то эта прямая пересечет каждую из параллельных прямых, причем под одним и тем же углом.
∠1 = ∠2 = ∠3
Части параллельных прямых, замкнутые между другими параллельными прямыми, равны.
Если а||b и d||c, а⊥с, b⊥c, b⊥d, a⊥d, то отрезки AB = CD и AC = BD.
Верно и обратное утверждение, если противоположные части четырех пересекающихся прямых равны, то эти части параллельны.
Подобную ситуацию можно представить, вспомнив четырехугольную столешницу или табурет.
Существуют другие признаки и свойства параллельных прямых, но они будут рассмотрены вами позже.
У меня есть дополнительная информация к этой части урока!
Параллельность прямых — вопрос, который имеет большую историю.
Главный труд древнегреческого математика Евклида «Начала» (300 лет до н.э.) является первым дошедшим до наших дней теоретическим трактатом по математике, он содержит основы античной геометрии и математики.
В «Началах» Евклид обобщил все ранее известные достижения древнегреческой математики и создал основу для ее дальнейшего изучения и развития.
Главное научное и историческое значение данной работы Евклида заключается в попытках построения теории геометрии на основе аксиом и логических рассуждений.
Изложение материала ведется от общего к частному: определения и аксиомы, далее постулаты, затем задачи и теоремы.
Евклид делает понятия аксиома и постулат различными, но это различие неясно.
Особый интерес и внимание у математиков всех времен и народов вызывала пятая аксиома о параллельных прямых, описанная в первой из тринадцати книг «Начала».
Пятый постулат Евклида о параллельных прямых, в отличие от остальных простых и элементарных для понимания постулатов, казался громоздким и, на первый взгляд, не очень очевидным.
В связи с этим многие математики пытались доказать недоказуемое и вывести постулат из разряда аксиом и представить как теорему.
Любые доказательства сводились к появлению только лишь более простых формулировок постулата.
За два тысячелетия было огромное множество попыток доказать пятый постулат, но каждая из них содержала утверждение, которое невозможно было доказать без использования того самого постулата.
Научные труды «Начала» оказали заметное влияние на развитие теории математики вплоть до наших дней.
Книга была переведена на множество языков.
В современных источниках приводится другая формулировка постулата о параллельных прямых, которая равносильна постулату Евклида.
Принадлежит она Птолемею Проклу: «В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной»
Существуют и другие эквивалентные формулировки.
Пройти тест и получить оценку можно после входа или регистрации
Источник