- Способы построения натуральной величины сечения
- Способы построения натуральной величины сечения
- Определение натуральной величины сечения
- Решение задачи по начертательной геометрии на определение натуральной величины сечения:
- Алгоритм решения задачи с использованием способа замены (перемены) плоскостей проекции
- Определение натуральной величины фигуры сечения
Способы построения натуральной величины сечения
Контрольные задания по теме:
Рабочая тетрадь задача 68, задача 69
Цилиндром будет называться геометрическое тело, полученное при ограничении цилиндрической поверхности двумя параллельными плоскостями — основаниями цилиндра. Если в основании цилиндра лежит окружность, а образующая перпендикулярна основанию, то цилиндр называется прямым круговым.
Линия сечения строится также при помощи опорных точек — точек пересечения секущей плоскости с очерковыми образующими и осью цилиндра. Но необходимо взять также промежуточные точки для более точного построения линии сечения. На рисунке 49 показано построение проекций сечения цилиндра фронтально — проецирующей плоскостью S. Так как цилиндр является проецирующей поверхностью, то горизонтальная проекция сечения совпадает с секущей плоскостью и на профильной проекции получим эллипс. Точки 2 и 3 будут являться границей видимости линии сечения для профильной плоскости.
Натуральную величину сечения можно определить способом вращения. Ось вращения выбираем в точке 1 и вращаем секущую плоскость до положения, параллельного горизонтальной плоскости. На горизонтальной плоскости получим эллипс, который будет являться натуральной величиной сечения цилиндра.
Рисунок 49
Разверткой цилиндра является прямоугольник с высотой, равной высоте цилиндра, и длиной, равной длине окружности основания 2πR. Для того, чтобы построить развертку усеченной части, основание цилиндра делят на равные части, тем самым аппроксимируя цилиндрическую поверхность призматической. Разделим окружность основания на 12 равных частей и отложим их вдоль горизонтальной линии развертки, по вертикали отложим высоту цилиндра (рис. 50).
Затем на полученных образующих отметим высоты точек сечения. Пристроим окружность основания и натуральную величину сечения.
Рисунок 50
Конус — это геометрическое тело, полученное путем ограничения конической поверхности плоскостью. Если в основании конуса лежит окружность, а высота попадает в центр основания, то конус называется прямым круговым.
На рисунке 51 построено сечение конуса фронтально — проецирующей плоскостью. Точки сечения находим при помощи вспомогательных секущих плоскостей. Точки С и D являются границей видимости для профильной проекции сечения.
Натуральную величину сечения находим способом вращения. Ось вращения выбираем в точке D и поворачиваем секущую плоскость до положения, параллельного горизонтальной плоскости проекций. Из горизонтальных проекций точек проводим линии, перпендикулярные оси вращения. Натуральной величиной сечения будет являться эллипс.
Рисунок 51
Развертка конуса является круговым сектором с радиусом, равным длине образующей конуса и длиной дуги, равной длине окружности основания конуса. Делим основание конуса на 12 равных частей и откладываем их по дуге на развертке. Затем на соответствующих образующих нужно отложить натуральные величины высот точек сечения. Чтобы получить полную развертку усеченной части, пристраиваем основание и натуральную величину сечения. На рисунке 52 показано построение развертки конуса.
Рисунок 52
1. Как образуется цилиндрическая поверхность?
2. Если секущая цилиндр плоскость фронтально проецирующая, то где будут лежать горизонтальные проекции точек сечения?
3. Какими способами можно определять натуральную величину фигуры сечения?
4. Какой геометрической фигурой является развертка боковой поверхности цилиндра? Конуса?
5. Для чего нужно разбивать окружность основания на некоторое количество равных частей?
6. Как построить развертку конической поверхности?
7. Как получить из полной развертки поверхности развертку ее усеченной части?
© ФГБОУ ВПО Красноярский государственный аграрный университет
Источник
Способы построения натуральной величины сечения
Контрольные задания по теме:
Рабочая тетрадь задача 68, задача 69
Цилиндром будет называться геометрическое тело, полученное при ограничении цилиндрической поверхности двумя параллельными плоскостями — основаниями цилиндра. Если в основании цилиндра лежит окружность, а образующая перпендикулярна основанию, то цилиндр называется прямым круговым.
Линия сечения строится также при помощи опорных точек — точек пересечения секущей плоскости с очерковыми образующими и осью цилиндра. Но необходимо взять также промежуточные точки для более точного построения линии сечения. На рисунке 49 показано построение проекций сечения цилиндра фронтально — проецирующей плоскостью S. Так как цилиндр является проецирующей поверхностью, то горизонтальная проекция сечения совпадает с секущей плоскостью и на профильной проекции получим эллипс. Точки 2 и 3 будут являться границей видимости линии сечения для профильной плоскости.
Натуральную величину сечения можно определить способом вращения. Ось вращения выбираем в точке 1 и вращаем секущую плоскость до положения, параллельного горизонтальной плоскости. На горизонтальной плоскости получим эллипс, который будет являться натуральной величиной сечения цилиндра.
Рисунок 49
Разверткой цилиндра является прямоугольник с высотой, равной высоте цилиндра, и длиной, равной длине окружности основания 2πR. Для того, чтобы построить развертку усеченной части, основание цилиндра делят на равные части, тем самым аппроксимируя цилиндрическую поверхность призматической. Разделим окружность основания на 12 равных частей и отложим их вдоль горизонтальной линии развертки, по вертикали отложим высоту цилиндра (рис. 50).
Затем на полученных образующих отметим высоты точек сечения. Пристроим окружность основания и натуральную величину сечения.
Рисунок 50
Конус — это геометрическое тело, полученное путем ограничения конической поверхности плоскостью. Если в основании конуса лежит окружность, а высота попадает в центр основания, то конус называется прямым круговым.
На рисунке 51 построено сечение конуса фронтально — проецирующей плоскостью. Точки сечения находим при помощи вспомогательных секущих плоскостей. Точки С и D являются границей видимости для профильной проекции сечения.
Натуральную величину сечения находим способом вращения. Ось вращения выбираем в точке D и поворачиваем секущую плоскость до положения, параллельного горизонтальной плоскости проекций. Из горизонтальных проекций точек проводим линии, перпендикулярные оси вращения. Натуральной величиной сечения будет являться эллипс.
Рисунок 51
Развертка конуса является круговым сектором с радиусом, равным длине образующей конуса и длиной дуги, равной длине окружности основания конуса. Делим основание конуса на 12 равных частей и откладываем их по дуге на развертке. Затем на соответствующих образующих нужно отложить натуральные величины высот точек сечения. Чтобы получить полную развертку усеченной части, пристраиваем основание и натуральную величину сечения. На рисунке 52 показано построение развертки конуса.
Рисунок 52
1. Как образуется цилиндрическая поверхность?
2. Если секущая цилиндр плоскость фронтально проецирующая, то где будут лежать горизонтальные проекции точек сечения?
3. Какими способами можно определять натуральную величину фигуры сечения?
4. Какой геометрической фигурой является развертка боковой поверхности цилиндра? Конуса?
5. Для чего нужно разбивать окружность основания на некоторое количество равных частей?
6. Как построить развертку конической поверхности?
7. Как получить из полной развертки поверхности развертку ее усеченной части?
© ФГБОУ ВПО Красноярский государственный аграрный университет
Источник
Определение натуральной величины сечения
Цель видеоурока Автокад/НГ: Обучение Автокад 2D на практике и закрепление пройденного материала раздела «Теоретические и практические видеоуроки Автокад». Закрепление знаний по решению задач на построение натуральной величины отрезка, треугольника, сечения и т.д. используя для этого любой способ преобразования чертежа.
Задание: Построить натуральную величину сечения, применив для этого любой способ преобразования чертежа.
Решение задачи по начертательной геометрии на определение натуральной величины сечения:
Все способы преобразования чертежа представлены в виде практических видеоуроков по НГ/Автокад в разделе «Способы преобразования чертежа».
В этом видеоуроке мы будем использовать способ перемены плоскостей проекций. Мы уже решили несколько задач по начертательной геометрии, используя способ перемены плоскостей проекций, вот некоторые из них:
Алгоритм решения задачи с использованием способа замены (перемены) плоскостей проекции
- Вводим новую плоскость, которая будет располагаться параллельно отрезка, в который проецируется сечение комбинированной поверхности на горизонтальной плоскости проекции.
- Строим линии связи.
- На линиях проекционной связи откладываем координаты Z точек сечения цилиндра.
Повторим специальную команду Выровнять в Автокад, которая ускорит построение натуральной величины сечения в 3 раза.
Более подробно в видеоуроке по начертательной геометрии в Автокад.
Источник
Определение натуральной величины фигуры сечения
Нередко практический интерес представляет задача определения натуральной величины фигуры сечения.
Определим натуральную величину сечения (четырехугольника), полученного на рис. 3.11. Так как четырехугольник 1234 занимает общее положение в пространстве, то его натуральную величину можно определить двумя переменами плоскостей проекций, сначала построив плоскость, перпендикулярную четырехугольнику 1234, а затем – параллельную ему. Чтобы не загромождать чертеж (рис. 3.11), вынесем построения на отдельный рисунок 3.12. Для построения плоскости, перпендикулярной плоскости четырехугольника 1234, необходимо начертить одну из главных линий, например, горизонталь. Ее фронтальная проекция h2 должна быть параллельна оси П1/П2. По точкам пересечения 2 и 4 с четырехугольником 1234 находим и горизонтальную проекцию h1 горизонтали.
Новая ось П4/П1, разделяющая П1 и новую плоскость П4, должна быть перпендикулярна h1. Затем получаем проекцию 14243444 в виде прямой. И наконец, вычертив вторую новую ось П5/П4, параллельно 1434, построим проекцию 15253545 четырехугольника в плоскости П5. Это и есть натуральная величина четырехугольника 1234. Сечение заштрихуем под углом 45° к горизонтальной прямой.
Чаще приходится решать более простую задачу – определение натуральной величины сечения многогранника плоскостью частного положения. В этом случае достаточно сделать всего одну замену плоскостей проекций. Рассмотрим на примере сечения пирамиды горизонтально–проецирующей плоскостью S (рис 3.13). Пусть задана горизонтальная проекция S1. Необходимо найти линию пересечения плоскости S с пирамидой и определить натуральную величину сечения. Таким образом, задача разбивается на две части: сначала надо построить сечение в плоскостях П1и П2, а затем определить его натуральную величину.
Рис. 3.13. Построение линии пересечения и определение натуральной величины сечения пирамиды плоскостью.
Чтобы решить первую часть задачи нужно найти все точки пересечения плоскости S с ребрами пирамиды и соединить их отрезками прямой. Горизонтальная проекция S1 пересекает ребра пирамиды в точках 11, 21, 31, 41 (рис. 3.13, а). По линиям связи находим их фронтальные проекции 12, 22, 32, 42 на фронтальных проекциях соответствующих ребер. Соединяя найденные точки, получаем линию пересечения 12223242 заданной плоскости с пирамидой. Отрезок 1242 этой линии будет невидимым, так как он лежит на невидимой грани A2S2C2. Плоская фигура, ограниченная полученной линией (на рис. 5.9, а заштрихована), и является сечением пирамиды плоскостью. В нашем примере это четырехугольник 1234.
Для определения натуральной величины четырехугольника 1234 способом замены плоскостей проекций не обязательно строить новую ось параллельно S1 (или 11214131), ввиду ограниченности площади чертежа. Достаточно соблюдать основные принципы построения. Начертим новую ось на свободном поле чертежа. Перенесем на нее точки 11,21,41,31, не меняя расстояния между ними. Проведем через них перпендикуляры к оси. Затем отложим на построенных перпендикулярах отрезки, равные расстояниям от оси П2/П1, которую считаем расположенной на основании А2В2С2 пирамиды, до соответствующих проекций 12, 22, 42, 32. Соединив указанные точки, получим натуральную величину сечения пирамиды заданной плоскостью S (рис. 3.13, б).
Как видим, сечение в натуральную величину отличается от 12223242 лишь тем, что оно вытянуто вдоль S1.
Источник