Способы построения магических квадратов простое объяснение

Основные методы построения магических квадратов с нечетным числом клеток

Статья просмотрена: 4973 раза

Библиографическое описание:

Бурханова, Ю. Н. Основные методы построения магических квадратов с нечетным числом клеток / Ю. Н. Бурханова, Е. А. Касаткина. — Текст : непосредственный // Молодой ученый. — 2010. — № 4 (15). — С. 29-35. — URL: https://moluch.ru/archive/15/1386/ (дата обращения: 19.11.2021).

Предлагаемая вниманию читателей статья посвящена вопросу, стоящему довольно далеко от центральной линии развития математической науки.

Священные, волшебные, загадочные, таинственные совершенные… Как только их не называли. Они пользовались особой популярностью у прорицателей, астрологов и врачевателей. Привлекающие своей красотой, наполненные внутренней гармонией, доступные, но по-прежнему непостижимые, скрывающие за кажущейся простотой множество тайн… Знакомьтесь: магические квадраты – удивительные представители воображаемого мира чисел.

Учение о магических квадратах занимало в математике значительное место лишь в тот период времени, когда всем руководили суеверия и астрология; в дальнейшем при возникновении новых естественнонаучных и технических задач теория магических квадратов стала не нужна. Однако учение о магических квадратах до сих пор может представлять интерес для любителей математики, в первую очередь для учащихся, в силу простоты и наглядности задач, не говоря уже о том, что это учение представляет собой благодарное поле приложения ряда более теоретико-числовых концепций.

Предлагаю вниманию читателя рассмотреть наиболее известные методы построения магических квадратов с нечетным числом клеток. При этом мы ограничиваемся лишь «классическими» магическими квадратами, т.е. квадратами, состоящими из последовательных натуральных чисел от 1 до .

Числовым квадратом порядка n, где n – некоторое положительное целое число, мы будем называть квадрат, разбитый на n 2 клеток, в которых размещены ( в некотором порядке) целые числа от 1 до . Числовой квадрат мы будем называть магическим, если суммы, получаемые от сложения чисел каждого горизонтального ряда, каждого вертикального ряда и обеих диагоналей, одинаковы. Так как квадрат порядка n и сумма чисел каждого ряда одинакова, то сумма всех чисел, размещенных в магическом квадрате, равна . С другой стороны, она равна[3]

. (1)

Условия равенства суммы элементов отдельных строк, столбцов и диагоналей числу мы будем называть условиями магичности этих строк, столбцов и диагоналей.[3]

Пример магического квадрата порядка 4 приведен на рис.1. (это так называемый квадрат Дюрера, изображенный на его гравюре «Меланхолия»). Для него в согласии с формулой (1), .

Рис.1. Квадрат Дюрера

Несмотря на то, что в свое время (особенно в XVI- XVIII веках) магические квадраты были предметом пристального изучения известных математиков, все же она не может считаться завершенной. Достаточно сказать, что до сих пор не известен никакой общий метод построения всех магических квадратов данного порядка n. Можно лишь утверждать, что это число делится на 8, так как из любого магического квадрата поворотами на 90 вокруг центра и отражениями в сторонах получаются еще 7 новых магических квадратов[4].

Клетки магического квадрата порядка n мы будем обозначать парами целых чисел (x,y) – их координатами, где х – номер вертикального ряда, у – номер горизонтального ряда, на их пересечении находится данная клетка[2]. При этом вертикальные мы нумеруем слева направо, а горизонтальные – снизу вверх. В качестве номеров мы будем использовать числа

Читайте также:  Способы сказать нет вредным привычкам

Сдвигая основной квадрат параллельно самому себе на векторы с целочисленными координатами, делящимися на n, мы получим систему налегающих друг на друга квадратов порядка n, покрывающую всю плоскость. Две клетки, принадлежащим двум таким квадратам и занимающие относительно них одинаковое положение, мы будем называть эквивалентными. В дальнейшем эквивалентные клетки будут играть одинаковую роль и будут рассматриваться как одинаковые. Каждое целое число z=1, 2, . . ., n 2 мы можем записать в виде

где r и s – некоторые числа системы (2), однозначно определенные числом z и, обратно определяющее это число. Мы будем числа r и z называть координатами числа z[2].

Например, при n=3 координаты чисел

z=1, 2, 3, 4, 5, 6, 7, 8, 9

имеют соответственно вид

При задании некоторого магического квадрата порядка n каждой паре r,s сопоставляется пара чисел х, у – координаты клетки квадрата, в которую вписано число с координатами r, s. Другими словами, числа х и у являются функциями чисел r и s. Обозначая эти функции буквами f и g, мы получим, следовательно, что х = f(r, s) и у = g(r, s).

В дальнейшем любую пару f(r, s) и g(r, s) мы будем называть методом построения магических квадратов[2].

Описанное сведение задачи построения магического квадрата к задаче построения пары функций f(r, s) и g(r, s) позволяет, в частности, классифицировать способы построения магических квадратов в зависимости от характера этих функций.

Индийский метод составления магических квадратов (иногда называемые также сиамским) является, по-видимому, самым древним алгоритмом построения магических квадратов произвольного нечетного порядка n=2m+1. этот алгоритм описывают следующими правилами[2]:

1 . Числа от 1 до n2 поочередно вписываются в клетки основного квадрата.

2 . Если некоторое правило требует вписать данное число в клетку, лежащую вне основного квадрата, то вместо этого рассматриваемое число вписывается в эквивалентную клетку основного квадрата.

3 . Число 1 вписывается в среднюю клетку верхнего ряда, т.е. в клетку с координатами (m, 2m).

4 . Если число z вписано в клетку с координатами (х, у), то следующее число z+1 вписывается в клетку с координатами (х+1, у+1), т.е. в клетку, смежную с клеткой (х, у), в направлении восходящей диагонали, при условии, что эта последняя клетка еще свободна от чисел.

5 . Если клетка с координатами (х+1, у+1) уже занята некоторым числом, то число z+1 вписывается в клетку с координатами (х, у-1), т.е. в клетку, непосредственно примыкающую снизу к клетке (х, у). (оказывается это всегда возможно, т.е. клетка (х, у-1) обязательно свободна от чисел).

На рис.2 изображен магический квадрат третьего порядка, построенный индийским методом. Для ясности в этом рисунке заполнены также некоторые клетки вне основного квадрата. Не описывая подробно это построение, мы укажем лишь, что число 1 вписано на основании правила 1 и 3 , число 2 – на основании правил 4 и 2 , число 3 – на основании правил 4 и 2 , число 4 – на основании правил 5 и 2 , число 5 – на основании правила 4 , число 6 – на основании правила 4 , число 7 – на основании правил 5 и 2 , число 8 – на основании правил 4 и 2 и, наконец, число 9 – на основании правил 4 и 2 .

Читайте также:  Способы развития памяти курсовая работа

Источник

Как решить магический квадрат: учимся решать одну из древнейших задач

Магический квадрат представляет собой квадратную таблицу с числами, построенную так, что сумма чисел в каждой строке, каждом столбце и в каждой диагонали равна одному и тому же числу (магическая сумма). Магические квадраты бывают разных порядков — порядок квадрата определяет число столбцов/строк. Как рассчитать и решать магические квадраты?

История

Археологи нашли свидетельства того, что волшебные таблицы были известны еще древним грекам и китайцам. «Магическими» эти фигуры назвали арабы, которые наделяли их сверхъестественными защитными свойствами.

В середине XVI в. европейские математики занялись исследованиями загадочных таблиц, положив начало их новой жизни. Они искали общий метод построения магических квадратов и пытались описать все возможные их варианты.

На уроках математики в школе

Решение магических квадратов на уроках математики и внеклассных занятиях вызывает интерес, способствует развитию мышления. Дети учатся планировать и контролировать свою работу. В клетки магических квадратов можно записывать не только числа, но и выражения. Все зависит от изучаемой темы. Задания с магическими квадратами часто дают как дополнительные или олимпиадные уже в начальной школе.

Один из способов решения магического квадрата

Нетрудно решить магический квадрат третьего порядка (у которого по три столбца и строки). Можно воспользоваться тем фактом, что число (выражение), стоящее на пересечении его диагоналей, всегда равно ⅓ волшебной суммы. Отсюда следует алгоритм построения:

  1. Вписываем в первую строку или столбец 3 любых числа.
  1. Вычисляем магическую сумму (0 + 2 + 4 = 6).
  2. Ищем ее третью часть (6/3 = 2).
  3. Полученное число записываем на пересечении диагоналей.
  1. Подбираем остальные числа и заполняем ими пустые клеточки квадрата.

Смотрите также:

Как рассчитать магический квадрат Пифагора самому?

Пифагор — математик, заложивший основы нумерологии. Ученый верил, что миром правят числа. Даже человеческая сущность зависит от них, ведь дата рождения не что иное, как число.

Магический квадрат Пифагора — фигура третьего порядка, клетки которой заполнены числами от 1 до 9. Он делится на 3 уровня: материальный, души и разума.

Цифры даты рождения вписываются в определенном порядке. Полученная комбинация рассказывает о заложенных природой способностях человека.

Материал может быть использован на занятии математического кружка, на внеклассном мероприятии. Цель — развить и расширить познавательный кругозор и логическое мышление.

Решаем магический квадрат Пифагора: пример

Дата рождения: 17.09.2005 г. Складываем эти цифры, не учитывая нули: 1 + 7 + 9 + 2 + 5 = 24. Аналогично поступаем с цифрами результата: 2 + 4 = 6.

Из первой суммы вычитаем удвоенную первую цифру дня рождения: 24 -2 = 22. Снова складываем: 2 + 2 = 4. Полученные числа: 17; 9; 25; 24; 6; 22; 4.

Цифры вписываем в магический квадрат так, чтобы все единицы оказались в первой клеточке, двойки — во второй и так далее. Нули не учитываем.

Клетка 1 – волевые качества, эгоизм.

Очень эгоистичные люди.

Эгоизм — яркая, но не преобладающая черта характера.

Спокойные, покладистые люди.

Сильный, волевой человек.

Люди с замашками диктатора.

Читайте также:  Договор гпх способы оплаты

Клетка 2 — биоэнергетика.

Воспитанность, природное благородство.

Люди с повышенной чувствительностью к атмосферным изменениям.

Человек с хорошим запасом биоэнергетики.

Клетка 3 — организованность, любовь к точности, конкретности, скрупулезность, скупость.

Чем больше троек, тем сильнее выражены вышеперечисленные качества.

Клетка 4 — здоровье.

Среднее, требуется закаливание.

Очень крепкое здоровье.

Клетка 5 — интуиция, экстрасенсорные способности

Чем больше пятерок, тем более выражена связь с космосом.

Клетка 6 — материализм.

Люди с неординарным воображением, которым необходим физический труд.

Могут посвятить время и творчеству, и точным наукам. Физические нагрузки обязательны.

Заземленные личности, тянущиеся к физическому труду.

Очень много заземленности.

Клетка 7 — талант.

Чем больше семерок, тем талантливее человек.

Клетка 8 — судьба, отношение к обязанностям.

Чувства долга нет.

Люди, которые всегда спешат помочь другим.

Признак служения народу.

Клетка 9 — умственные способности

Полное отсутствие девяток означает очень низкий уровень умственной деятельности. Чем больше количество девяток, тем умнее человек.

Задачи на составление магических квадратов часто включаются в сборники нестандартных заданий. Они встречаются на олимпиадах. Увлеченным математикой школьникам будет полезно узнать об этом классе задач.

Об авторе: Филиппова Оксана, учитель математики, физики и информатики.

Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
стало известно автору, войдите на сайт как пользователь
и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.

Понравился материал?
Хотите прочитать позже?
Сохраните на своей стене и
поделитесь с друзьями

Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст

Ошибка в тексте? Мы очень сожалеем,
что допустили ее. Пожалуйста, выделите ее
и нажмите на клавиатуре CTRL + ENTER.

Кстати, такая возможность есть
на всех страницах нашего сайта

Девиз: поднемите руки выше!
по

2007-2021 «Педагогическое сообщество Екатерины Пашковой — PEDSOVET.SU».
12+ Свидетельство о регистрации СМИ: Эл №ФС77-41726 от 20.08.2010 г. Выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций.
Адрес редакции: 603111, г. Нижний Новгород, ул. Раевского 15-45
Адрес учредителя: 603111, г. Нижний Новгород, ул. Раевского 15-45
Учредитель, главный редактор: Пашкова Екатерина Ивановна
Контакты: +7-920-0-777-397, info@pedsovet.su
Домен: https://pedsovet.su/
Копирование материалов сайта строго запрещено, регулярно отслеживается и преследуется по закону.

Отправляя материал на сайт, автор безвозмездно, без требования авторского вознаграждения, передает редакции права на использование материалов в коммерческих или некоммерческих целях, в частности, право на воспроизведение, публичный показ, перевод и переработку произведения, доведение до всеобщего сведения — в соотв. с ГК РФ. (ст. 1270 и др.). См. также Правила публикации конкретного типа материала. Мнение редакции может не совпадать с точкой зрения авторов.

Для подтверждения подлинности выданных сайтом документов сделайте запрос в редакцию.

О работе с сайтом

Мы используем cookie.

Публикуя материалы на сайте (комментарии, статьи, разработки и др.), пользователи берут на себя всю ответственность за содержание материалов и разрешение любых спорных вопросов с третьми лицами.

При этом редакция сайта готова оказывать всяческую поддержку как в публикации, так и других вопросах.

Если вы обнаружили, что на нашем сайте незаконно используются материалы, сообщите администратору — материалы будут удалены.

Источник

Оцените статью
Разные способы