Способы получения высоких температур

Методы достижения высоких температур

Термические методы анализа веществ развиваются в нескольких направлениях. В первую очередь – это расширение температурного диапазона, в котором исследуются образцы. Обычно нагрев пробы до высоких температур осуществляется в электрических печах. Обмотки из проволоки или ленты, изготовленные из сплавов железа, хрома и алюминия (например, кантал) применимы для температур, приблизительно, до 1600 К. Использование благородных металлов позволяет поднять этот предел до 1900 К (платина), 2100 К (родий) и 2400 К (иридий). Еще более высокие температуры обеспечивают молибден (порядка 2500 К), тантал (2800 К) и вольфрам (3000 К), но нагревательные элементы из этих металлов могут работать лишь в вакууме или в атмосфере, не содержащей кислорода. Стержни и трубки из карбида кремния или дисилицида молибдена (суперкантал МоSi2) могут использоваться на воздухе до температур 1800. 2000 K.

Температуры около 3300 К, и даже более высокие, достижимы в печах с нагревательными элементами, изготовленными в виде труб из графита или вольфрама, однако эти печи могут работать только в бескислородной атмосфере.

Другим часто применяемым способом является индукционный нагрев, при котором возможно достижение температур до 3300 К. Оригинальным методом нагрева материалов, основанном на этом принципе, является так называемая плавка в «холодном тигле». Данный метод разработан в 70-х гг. Ю. Б. Петровым и сотрудниками. В дальнейшем его активно использовали для выращивания монокристаллов тугоплавких оксидов (например, академиком Осико и сотрудниками Физического института им. П. И. Лебедева АН СССР (ФИАН) этим методом были выращены монокристаллы на основе стабилизированного диоксида циркония со структурой флюорита, названные в честь института, в котором они были впервые синтезированы, фианитами и применяющиеся как искусственные драгоценные камни) и других технологических целей. Кроме того, метод плавки в «холодном тигле» активно используется для изучения фазовых равновесий в области высоких температур.

Такие же, а при определенных условиях – и более высокие температуры, могут быть получены в электродуговых печах.

Образцы, которые являются электрическими проводниками могут нагреваться до очень высоких температур непосредственным пропусканием тока. Этот способ имеет дополнительное преимущество – возможность нагрева образцов практически без контейнеров в атмосфере любого типа.

Близким к описанному является способ нагрева короткими импульсами, согласно которому электропроводный образец нагревается очень кратковременным импульсом электрического тока. Образец может иметь форму трубки, проволоки или ленты.

Очень высокие температуры могут быть достигнуты фокусированием энергии источника света на подлежащем нагреву материале, причем источником света может быть либо солнце (солнечные печи), либо искусственный источник. Значительным преимуществом этого способа является возможность нагрева образцов практически без контейнера в атмосфере любого типа, а теоретический верхний предел температуры определяется температурой самого источника.

Попытки достижения высоких температур фокусированием солнечного света делались еще в глубокой древности. Однако первые удачные эксперименты были проведены в 1921 г., при этом температура достигла порядка 4300 К.

У солнечных печей есть существенный недостаток – зависимость от погодных условий. Поэтому были разработаны устройства с использованием искусственных источников излучения. Подобные печи с применением в качестве источника света, например электрической дуги, используются уже несколько десятков лет. Достижимые температуры лежат в диапазоне от 2500 до 4000 К. Примером такой печи может служить лучевая печь. Образец размещается в одном из общих фокусов сегментов двух эллипсоидальных зеркал (полированный алюминий), а источник излучения (две галогеновые лампы номинальной мощностью 400 Вт и с температурой спирали 2500 К) был размещен в двух других фокусах.

Относительно новый метод нагрева сделался возможным с появлением лазеров, позволяющих достичь температур свыше 5000 К. Это СО2-лазеры и лазеры на ИАГ (иттриево–алюминиевого гранат), работающие в импульсном режиме.

Читайте также:  Какими способами дезинфицируют рабочий стол инвентарь

В тех случаях, когда в рабочей камере необходимо точное соблюдение заданного состава газа, часто используют электродуговые или индукционные плазменные печи.

Электронные пучки также могут быть использованы для нагрева материалов до очень высоких температур. В принципе, достижимые температуры ограничены только потерями тепла вследствие излучения, вторичной эмиссии и испарения материала.

Интересным методом точного поддержания необходимых температур с заданной длительностью и в конкретной зоне является использование печей с тепловыми трубами. Тепловая труба – это замкнутая вакуумированная камера, внутренние стенки которой облицованы капиллярной структурой (фитилем), пропитанной летучей рабочей жидкостью. Жидкость испаряется в более горячей и конденсируется в более холодной зонах камеры, чем обеспечивается очень эффективное выравнивание перепадов температур.

Современные тенденции развития термических методов исследования веществ и материалов.

Итак, одним из направлений развития стандартной аппаратуры для термического анализа является разработка приборов с более высоким верхним пределом температур. Серийно выпускаемые приборы имеют сегодня верхний предел измеряемых температур до 1850 К (таким прибором являются и рассмотренный ранее дериватограф), но есть ряд моделей, применимых до температур порядка 2700 К. По мере повышения температуры выбор наилучшего материала для тиглей становится ключевой проблемой, особенно при необходимости изучения химически активных веществ или материалов, содержащих более или менее летучие компоненты. Хотя имеются данные об использовании кварцевых тиглей до температур порядка 1800 К, температура надежной их эксплуатации представляется значительно меньшей (порядка 1500 K). В большинстве случаев при более высоких температурах кварц заменяют огнеупорными оксидами или металлами для высокотемпературных измерений, а то и вовсе отказываются от тиглей.

В частности, разработан ряд способов исследований левитирующих (парящих без опоры) образцов. До начала 90-х гг. наиболее часто использовалась левитация (левитация – устойчивое положение объекта в гравитационном поле без непосредственного контакта с другими объектами; необходимые условия для левитации: 1) наличие силы, компенсирующей силу тяжести и 2) наличие возвращающей силы, обеспечивающей устойчивость объекта) электропроводного (в основном, металлического) образца в неоднородном магнитном поле в сочетании с индукционным нагревом. Этим обеспечивалась возможность исследования твердых и жидких материалов (в том числе с высокой химической активностью) без прямого контакта с материалом тигля. Данный способ был использован при термодинамических измерениях параметров химически активных веществ.

Интересен несколько иной способ левитации, в котором образец удерживается в заданном положении ультразвуковым полем.

Почти во всех приборах для термического анализа, предназначенных для работы при очень высоких температурах, используются оптические методы измерений температуры.

Другим направлением развития термических методов исследования является разработка приборов, в которых химические и фазовые изменения в системе при нагреве фиксируются измерением иных – нетепловых и негравиметрических – характеристик образца. Одной из групп таких методов являются акустические. Таков, например, метод термосониметрии – согласно которому, излучаемый веществом звук измеряется в функции от температуры, изменяемой по заданной программе.

Еще одним акустическим методом является термоакустометрия, которая основана на влиянии температуры на упругость, а следовательно, и на скорость звука в материале.

При термомеханическом анализе (ТМА) деформация образца измеряется в функции от температуры.

Дилатометры являются хорошо известными приборами для научных и промышленных целей. Принцип работы этих приборов основан на определении изменения размеров исследуемых образцов под действием температуры.

Измерения магнитных свойств в функции от температуры (термомагнитометрия) также часто дают полезную информацию. Многие магнитные превращения, хотя они и происходят при относительно низких температурах, могут быть выявлены только этим методом.

Фазовые превращения могут быть выявлены всеми способами, согласно которым, термодинамические параметры (ЭДС, давление паров и т. п.) определяются как функция температуры. К этой категории должны быть отнесены все методы высокотемпературных рентгеновских исследований, если они выполняются в динамическом режиме. Последние удается совместить с методами DTA и TG, что позволяет расширить и уточнить получаемую информацию.

Все методы, рассмотренные в данном разделе, относятся к группе динамических. Но для наиболее точного установления свойств исследуемых веществ и процессов, протекающих в них при определенной температуре, необходим иной подход к измерению.

Читайте также:  Как нарисовать галстук карандашом легкий способ по пунктам

Способы, при использовании которых в образцах, содержащих различные вещества, для определения их фазового состава устанавливается равновесие при определенной температуре, могут быть названы статическими (нединамическими) способами. Методы, позволяющие изучать материал в состоянии равновесия, обеспечивают более достоверные результаты. Рентгеновские методы, а также оптическая и электронная микроскопия относятся к числу наиболее эффективных статических методов. Кроме того, эти методы могут быть дополнены измерениями различных иных параметров, например, электрических и магнитных свойств, микротвердости, упругости и т. п.

Существует группа методов представляющих попытку разделения фаз, существующих при определенной температуре, с целью независимого определения их состава. Это высокотемпературные центрифуги для определения интервалов плавления. Другой подход основан на управляемой кристаллизации расплавленного образца, ведущей к характерной последовательности расположения фаз. Изящным способом выявления фаз системы является метод диффузионных пар, при котором исходные материалы взаимно диффундируют при определенной температуре. Полученные образцы могут быть исследованы методами микроанализа или образцы могут быть разрезаны для раздельного анализа частей.

Следует отметить и такое направление развития термического анализа, которое связано с многократным повышением точности (прецизионности) измерения термических эффектов. Однако наиболее примечательным и широким направлением развития стандартной и нестандартной аппаратуры для термического анализа за последние годы является его все более широкая автоматизация, т. е. применение микро-компьютеров и микропроцессоров.

Возможность компьютерной обработки данных о термических превращениях позволила повысить точность определения температуры начала превращения, значительно облегчила проведение кинетического анализа результатов эксперимента, осуществленного в неизотермических условиях, и увеличила наглядность представления результатов за счет возможности соответствующей обработки экспериментальных результатов, сравнения наложением различных изображений, в том числе взятых из базы данных, и т. п.

Источник

Физика

Способы получения высоких и низких температур. Влияние высоких и низких температур на живой организм (Реферат)

Современные способы получения низких температур

Испаряя жидкий гелий в вакууме, можно получить температуру всего на 0,7 К больше абсолютного нуля. Еще более низкую температуру (до 0,3 К) дает сжиженный изотоп гелия 3 Не.

Чтобы охладить какой-либо предмет до нужной температуры, достаточно поместить его в ванну с соответствующим сжиженным газом. Таким образом, основная задача при получении очень низких температур – это сжижение газов. Его можно добиться двумя методами.

Первый метод – дросселирование, то есть расширение сжатого газа в вентиле. При таком расширении молекулы газа преодолевают силу взаимного притяжения, их тепловое движение замедляется, и газ охлаждается. Этот метод применяется в простейших установках для ожижения газов. Газ сжимают компрессором, охлаждают в теплообменнике и расширяют в дроссельном вентиле. При таком расширении часть газа ожижается.

У каждого газа есть определенная температурная точка – инверсионная температура. При дросселировании газа, находящегося выше инверсионной температуры, он уже не охлаждается, а нагревается. Поэтому применять метод дросселирования можно только предварительно охладив газ ниже его инверсионной температуры. Для большинства газов инверсионная температура выше комнатной, но у водорода она равна 193 К (–80° С), а у гелия даже 33 К (–240° С).

При другом способе получения холода сжатый газ заставляют не только расширяться, но и совершать механическую работу в цилиндре с поршнем или в турбине. Молекулы газа, ударяясь о поршень или о лопатки турбины, передают им свою энергию; скорость молекул сильно снижается, и газ интенсивно охлаждается. Расширительные машины, применяемые при этом способе, называются детандерами. Они могут быть поршневого или турбинного типа. На рисунке 2 показано, как устроен аппарат для ожижения гелия с поршневым детандером. В аппарат из компрессора поступает гелий, сжатый при комнатной температуре давлением около 20 атмосфер. Сжатый гелий предварительно охлаждается в теплообменнике и в ванне с жидким азотом. Большая часть сжатого гелия расширяется в поршневом детандере, а гелий, оставшийся сжатым, охлаждается холодным газом до 11-12 К и после теплообменника расширяется в дроссельном вентиле. При этом часть газа превращается в жидкость и скапливается в сборнике.

Гелий, оставшийся в газообразном состоянии, подается в теплообменник для охлаждения следующих порций газа, нагревается до комнатной температуры и вновь сжимается компрессором. При этом сжижается примерно 10% подаваемого в аппарат гелия. Для теплоизоляции от окружающей среды, все холодные узлы аппарата помещены в герметичный кожух – своеобразный термос, в котором поддерживается высокий вакуум.

Читайте также:  Кабель бронированный способ прокладки

Жидкий гелий представляет собой бесцветную легкую жидкость, плотность которой в 8 раз меньше, чем у воды. Он кипит под атмосферным давлением при температуре около 4 К. Жидкий гелий используется обычно для охлаждения исследуемых веществ до температуры, близкой к абсолютному нулю. Водород, азот и другие газы сжижают примерно теми же методами, но соответственно при более высокой температуре.

Исследование низких температур привело к открытию двух удивительных явлений – сверхпроводимости и сверхтекучести. Оба эти явления весьма отличаются от свойств, которыми обладают вещества при обычных температурах и могут быть объяснены только с помощью квантовой механики.

Источник

Физика

Способы получения высоких и низких температур. Влияние высоких и низких температур на живой организм (Реферат)

Способы получения высоких и низких температур

Способы получения низких температур

Термодинамическая температура

Классическая термодинамика подразумевает скрытое движение частиц, выражаемое температурой. Это положение является в термодинамике столь важным, что его иногда называют нулевым началом термодинамики, чтобы подчеркнуть его принципиальное значение как исходной предпосылки, и формулируют в виде аксиомы: все тела при тепловом равновесии обладают температурой.

Температура определяется интенсивностью теплового движения молекул и атомов. Чем быстрее они двигаются в веществе, тем выше его температура. Когда вещество охлаждается, тепловое движение его частиц затухает. Если же тепловое движение совсем прекратится, дальнейшее понижение температуры станет невозможным. Такую наинизшую температуру называют абсолютным нулем и принимают ее за начало отсчета в абсолютной температурной шкале, носящей имя английского физика Кельвина. Кельвин (К) – единица термодинамической температуры – одна из основных единиц Международной системы единиц (СИ). Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Для удобства практики взята близкая к ней точка таяния льда 273,15 К, соответствующая 0° С шкалы Цельсия. Поэтому температура в кельвинах (Т) связана с температурой в градусах Цельсия (t) соотношением

Бесконечно малое изменение температуры в градусах шкалы Цельсия и Кельвина одно и то же :

Повседневный опыт убеждает нас в том, что при контакте двух тел с разной температурой тепло самопроизвольно переходит от более нагретого тела к менее нагретому и температуры обоих тел становятся равными. Передача тепла от менее нагретого тела к телу более высокой температуры никогда не происходит самопроизвольно. Чтобы осуществить такую передачу, надо затратить энергию – механическую, электрическую, химическую или какую-нибудь другую.

Передачу тепла от холодного тела в окружающую среду, имеющую более высокую температуру, можно рассматривать как получение холода. Тогда под холодом надо подразумевать количество тепла, которое отнимается от охлаждаемого тела. Количество холода не пропорционально затраченной работе: чем ниже температура охлаждаемого тела, тем больше нужно работы, чтобы получить то же количество холода. Особенно сильно возрастает затрата работы на охлаждение вблизи абсолютного нуля. Например, чтобы получить холод на температурном уровне 3 К (–270° С), нужно затратить в 1000 раз больше работы, чем для получения того же количества холода при температуре 270 К (–3° С). При абсолютном же нуле затрата работы для получения холода должна быть равна бесконечности. Это показывает, что охладить тело точно до 0 К вообще невозможно.

Понижение температуры меняет свойства многих тел. Например, мягкая и упругая резина становится при температуре около 200 К жесткой и от удара молотком раскалывается, как стекло. Так же ведут себя многие металлы, например, сталь, свинец. Если из свинца сделать колокольчик и охладить его в жидком азоте, он будет издавать мелодичный звон: свинец станет твердым. Но есть металлы и сплавы, в которых понижение температуры увеличивает прочность, оставляя им достаточную пластичность. Таковы, например, медь, ее сплавы и алюминий. Именно из этих металлов изготовляют аппараты, которые используются при низких температурах.

Источник

Оцените статью
Разные способы