Способы получения вращающегося магнитного поля

Вращающееся магнитное поле

Принцип получения вращающегося магнитного поля.

В основе работы асинхронных двигателей лежит вращающееся магнитное поле, создаваемое МДС обмоток статора.

Принцип получения вращающегося магнитного поля с помощью неподвижной системы проводников заключается в том, что если по системе неподвижных проводников, распределенных в пространстве по окружности, протекают токи, сдвинутые по фазе, то в пространстве создается вращающееся поле. Если система проводников симметрична, а угол сдвига фаз между токами соседних проводников одинаков, то амплитуда индукции вращающегося магнитного поля и скорость постоянны. Если окружность с проводниками развернуть на плоскость, то с помощью подобной системы можно получить «бегущее» поле.

Вращающееся поле переменного тока трехфазной цепи.

Рассмотрим получение вращающегося поля на примере трехфазного асинхронного двигателя с тремя обмотками, сдвинутыми по окружности на 120° (рис.3.5) и соединенными звездой. Пусть обмотки статора питаются симметричным трехфазным напряжением со сдвигом фаз напряжений и токов на 120°.

Если для обмотки АХ принять начальную фазу тока равной нулю, тогда мгновенные значения токов имеют вид

Графики токов представлены на рис. 3.6. Примем, что в каждой обмотке всего два провода, занимающие два диаметрально расположенные паза.

Как видно из рис. 3.6, в момент времени to ток в фазе А положительный, а в фазах В и С – отрицательный.

Если ток положительный, то направление тока примем от начала к концу обмотки, что соответствует обозначению знаком «х» в начале обмотки и знаком «·» (точка) в конце обмотки. Пользуясь правилом правоходового винта, легко найти картину распределения магнитного поля для момента времени to (рис. 3.7, а). Ось результирующего магнитного поля с индукцией Втрез расположена горизонтально.

На рис. 3.7, б показана картина магнитного поля в момент времени ti, соответствующий изменению фазы тока на угол = 60°. В этот момент времени токи в фазах А и В положительные, т. е. ток идет в них от начала к концу, а ток в фазе С отрицательный, т. е. идет от конца к началу. Магнитное поле оказывается повернутым по часовой стрелке на угол = 60°. Если угловая частота тока , то . (Здесь , где – частота тока в сети). В моменты времени t2 и t3 ось магнитного поля соответственно повернется на углы и (рис. 3.6, в и г). Через время, равное периоду Т, ось поля займет первоначальное положение. Следовательно, за период Т поле делает один оборот (рис. 3.7, д) ( ()). В рассмотренном случае число полюсов 2р = 2 и магнитное поле вращается с частотой n1=60f1=60∙50=3000 об / мин (f1=50 Гц промышленная частота). Можно доказать, что результирующая магнитная индукция представляет собой вращающееся поле с амплитудой

где Вт максимальная индукция одной фазы; Вmрез – максимальная индукция трех фаз; – угол между горизонтальной осью и прямой, соединяющей центр с произвольной точкой между статором и ротором.

Направление вращения поля.

В рассмотренном случае направление вращения поля совпадает с направлением движения часовой стрелки. Если поменять местами выводы любых двух фаз питающего напряжения, например B и С, что соответствует обратной последовательности фаз, то направление вращения поля будет противоположным (против движения часовой стрелки), т. е. магнитное поле реверсируется (ср. рис. 3.8).

Формула частоты вращения поля.

Если число катушек в каждой фазе увеличить, а сдвиг фаз между токами сохранить в 120°, то частота вращения поля изменится. Например, при двух катушках в каждой фазе, расположенных, как показано на рис. 3.9, поле за один период повернется в пространстве на 180°.

Читайте также:  Медикаментозный способ прерывания беременности что это такое

Рис. 3.8 Рис. 3.9 Рис. 3.10

Для получения картины поля возьмем момент времени to, когда ток в фазе А положительный, а токи в фазах В и С отрицательные. Пользуясь правилом знаков для токов находим, что в данном случае число полюсов 2р = 4 или р = 2 и тогда n1 = 60f1 / p = 3000/2 =1500 об/мин. Рассуждая аналогично, для трех катушек в каждой фазе находим картину поля, показанную на рис.3.10. Здесь р = 3 и, следовательно, n1 = 1000 об/мин.

Общая формула для определения частоты вращения, об/мин, будет

Во всех рассмотренных случаях катушки каждой фазы были соединены между собой последовательно. Именно при таком соединении частота вращения поля статора для р = 1, 2 и 3 при f1= 50 Гц составила соответственно 3000, 1500 и 1000 об/мин.

Параллельное соединение катушек.

Покажем, что при переключении катушек из одной фазы в другую и при их параллельном соединении число полюсов поля и, следовательно, частота вращения поля будут отличными от рассмотренных. В качестве примера возьмем по две катушки в каждой фазе и соединим их между собой параллельно так, как показано на рис.3.11,а и в развернутом виде на рис. 3.11,6. Из картины поля видно, что р = 1, а частота вращения n1 = 3000 об/мин. Выше было показано, что при последовательном соединении тех же катушек частота вращения была 1500 об/мин. При частоте тока в в сети 50 Гц частота вращения поля статора определяется из выражения

п1 = 60 f1 / p = 60 ∙50 / p .

Задаваясь различным числом пар полюсов р = 1, 2, 3, 4, 5, 6, 8, 10, находим частоту вращения поля. Результаты расчета сведены в табл. 3.1.

Источник

№41 Вращающееся магнитное поле.

Одним из важнейших достоинств трехфазной системы является возможность получения с ее помощью кругового вращающегося магнитного поля, которое лежит в основе работы трехфазных машин (генераторов и двигателей).

Для получения кругового вращающегося магнитного поля необходимо и достаточно выполнить два условия. Условие первое: необходимо 3p одинаковых катушки (p =1, 2, 3,….) расположить в пространстве так, чтобы их оси были расположены в одной плоскости и сдвинуты взаимно на равные углы ∆α=360°/3p. Условие второе: необходимо пропустить по катушкам равные по амплитуде и сдвинутые во времени на ∆t=T/3 или ∆ωt = 360°/3=120° переменные токи (симметричный трехфазный ток). При соблюдении указанных условий в пространстве вокруг катушек будет создано круговое вращающееся маг-нитное поле с постоянной амплитудой индукции Вmax вдоль его оси и с постоянной угловой скоростью вращения ωп.

На рис. 41.1 показано пространственное расположение трех (p = 1) одинаковых катушек под равными углами в 120° согласно первому условию.

По катушкам, по направлению от их начал (A, B, C) к концам (X, Y, Z) протекает симметричный трехфазный ток:

Магнитное поле, создаваемое каждой катушкой в отдельности, пропорционально току катушки (B = k*i), следовательно магнитные поля отдельных катушек в центре координат образуют симметричную трехфазную систему В(t):

Положительные направления магнитных полей каждой катушки (векторов BA, BB, BC) в пространстве определяются по правилу правоходового винта согласно принятым положительным направлениям токов катушек (рис. 41.1).

Результирующий вектор индукции магнитного поля B для любого момента времени может быть найден путем пространственного сложения векторов BA, BB, BC отдельных катушек. Определим значение результирующего вектора индукции магнитного поля B для нескольких моментов времени ωt = 0°; 30°; 60°. Пространственное сложение векторов вы¬полним графически (рис. 41.2а, б, в ). Результаты расчета сведены в отдельную таблицу:

Читайте также:  Способы стратегии охвата рынка

Анализ таблицы показывает, что результирующий вектор индукции магнитного поля B(t,x,y) имеет постоянную амплитуду (Вmax=3/2Bm) и равномерно вращается в пространстве в положительную сторону по направлению катушки А к катушке В с угловой скоростью ωп , равной угловой частоте тока ω. В общем случае угловая скорость вращения магнитного поля зависит еще и от числа катушек:

В технике для характеристики вращения магнитного поля пользуются понятием частоты вращения: n=60f/p [об/мин]

С изменением числа p пространственная картина магнитного поля изменяется: при p=1 магнитное поле имеет два полюса (или одну пару полюсов), при p=2 – четыре полюса (или 2 пары полюсов) и т.д. (рис. 41.3). По этой причине число p = 1, 2, 3,… называют числом пар полюсов магнитного поля.

Частоту вращения магнитного поля можно изменять плавно изменением частоты питающего тока f, и ступенчато — изменением числа пар полюсов p. В промышленных условиях оба способа регулирования частоты вращения поля являются технически и экономически малоэффективными. При постоянной частоте промышленного тока f=50 Гц шкала синхронных частот вращения магнитного поля в функции числа пар полюсов выглядит следующим образом:

Для изменения направления вращения магнитного поля достаточно изменить порядок следования фаз питающего тока или, попросту, поменять местами две любые фазы источника между собой.

Источник

Вращающееся магнитное поле

Вы будете перенаправлены на Автор24

В 1824 г. французский ученый. Д.Ф Араго открыл явление, которое назвали «магнетизмом вращения». Оно заключалось в том, что при вращении магнитной стрелки (магнита), медный диск, подвешенный на оси над стрелкой (или находящийся под ней) начинал вращаться.

Это явление объяснил М. Фарадей тем, что вращающееся магнитное поле порождает в диске вихревые токи, и эти токи взаимодействуют с магнитом.

Вращающимся магнитным полем называют магнитное поле, которое характеризуется вектором магнитной индукции постоянным по величине, но изменяющим свое направление, а именно вращающимся с неизменной угловой скоростью.

Иногда вращающимися считают магнитные поля, которые создают постоянные магниты, совершающие вращательные движения относительно оси, которая не совпадает с осью их симметрии.

Вращающееся магнитное поле можно получить, если наложить два и более магнитных поля:

  • имеющих разные направления,
  • изменяющихся по гармоническим законам (обычно синусоидальным законам);
  • обладающих одинаковыми частотами;
  • сдвинутых друг относительно друга по фазе.

Вращающееся магнитное поле может быть получено в многофазных системах. При этом используются неподвижные катушки. Допустим, что магнитное поле в катушке создает синусоидальный электрический ток. Для того, чтобы система катушек с током создавала круговое вращающееся магнитное поле необходимо:

  1. Чтобы оси катушек имели определенный сдвиг. Так для системы из двух фаз – это угол в 90°. Для трехфазной системы — 120°.
  2. Электрические токи, протекающие по катушкам должны обладать сдвигом по фазе, который соответствует их смещению в пространстве.

Система Тесла для получения вращающегося магнитного поля

Одним из первых вращающееся магнитное поле было получено Н. Тесла. Ученый использовал двухфазную систему. Он пропускал через две катушки (рис.1), расположенные под углом в 90° переменные электрические токи, изменяющиеся по гармоническим законам. При этом каждая катушка создавала пульсирующее магнитное поле.

Готовые работы на аналогичную тему

Рисунок 1. Система Тесла для получения вращающегося магнитного пол. Автор24 — интернет-биржа студенческих работ

На рис.1 указаны направления магнитных полей, которые создают катушки: $\vec_<1>$ и $\vec_<2>$. . Магнитные поля отдельных катушек изменяются по законам синусов, как и токи в катушках. Пусть сдвиг фаз в колебаниях модулей векторов магнитной индукции составляет $\frac<\pi ><2>$:

Читайте также:  Назовите способы питания брюхоногих моллюсков кратко опишите процессы пищеварения

В проекциях на оси декартовой системы координат ($XOY$) рис.1 уравнения (1) и (2) дают:

Найдем величину полученного поля по теореме Пифагора:

Выражение (5) указывает на то, что величина полученного магнитного поля не изменяется. Из рис.1 видно, что угол, который результирующий вектор магнитной индукции составляет с осью $X$, равен:

$tg\, \left( \alpha \right)=\frac>>=\frac\sin \left( \omega t \right)>\cos <(\omega t)>>=tg\left( \omega t \right)\to \alpha =\omega t\left( 6 \right)$

Результаты, показанные выражениям (5) и (6), говорят нам о том, что вектор магнитной индукции суммарного поля постоянен по величине и совершает вращения в пространстве с угловой скоростью $\omega=const.$ Годограф $\vec$ представляет собой окружность, что отвечает вращающемуся магнитному полю, вращение поля называют круговым.

Эллиптическое магнитное поле

Если возникает асимметрия токов, порождающих магнитное поле или магнитных свойств сердечников катушек, то появляется асимметрия магнитного поля. При этом годограф вектора магнитной индукции покажет эллипс. Эллиптический годограф отвечает сумме пары векторов, имеющих круговые годографы, совершающих вращения в противоположных направлениях.

При совпадении прямого и обратного вращения, годограф вектора магнитной индукции выродится в прямую линию. При этом полученное поле называют пульсирующим.

Круговое магнитное поле можно считать частным случаем эллиптического. Такое становится возможным, если отсутствует одна из фаз.

Применение вращающегося магнитного поля

Взаимодействие вращающегося магнитного поля и электрического тока лежит в основании действия асинхронного двигателя. При этом электрический ток течет в обмотке ротора, вращающееся магнитное поле создается обмотками статора.

Статор имеет трехфазную обмотку. Ее оси сдвинуты в пространстве на 120° по окружности. В обмотках статора текут токи, изменяющиеся в соответствии с законами:

Переменные токи порождают магнитные поля с индукциями, направленными по осям обмоток:

По принципу суперпозиции результирующее поле в сердечнике статора получается, как сумма отдельных полей. Используя векторную диаграмму сложения:

и подход с проектированием на оси (XYZ) декартовой системы координат (как выше в двухфазной системе), величину результирующего поля имеем:

При этом вектор магнитной индукции образует с осью ординат угол, равный:

$tg\, \left( \hat<\vec\vec> \right)=tg\, \left( \omega t \right)\to\alpha =\omega t\left( 10 \right)$

Мы получили, что постоянный по величине вектор магнитной индукции вращается с неизменной угловой скоростью ω, то есть имеем вращающееся по кругу магнитное поле.

Отметим, что $B_m$ – максимальная величина магнитной индукции поля, порождаемого одной обмоткой. Магнитное поле вращается внутри статора с угловой частотой $\omega=const,$ которая определяется частотой источника тока, который питает обмотки статора.

Направление вращения магнитного поля определено очередностью фаз. Если переключить любые две обмотки, то поле станет вращаться в противоположную сторону.

При увеличении количества пазов сердечника, и делении каждой обмотки надвое (причем ее пазы следует разместить так, что начала и концы частей обмоток находятся в пазах, которые смещены по окружности статора на π/2), то при включении сети возникнет магнитное поле с удвоенным количеством полюсов. Частота такого поля станет вдвое меньше.

Разделим обмотки на $m$ частей. При этом будут порождаться магнитные поля с количеством магнитных полюсов $m$, угловая частота вращения такого поля составит:

где $\omega$ – частота питания; $m$ — количество пар полюсов магнитного поля.

Чаще всего частоту вращения магнитного поля называют скоростью вращения ($n$). Единицей вращения этой скорости считают оборот в минуту.

где $\nu $ – частота питания (в Гц).

Каждая фазная обмотка отдельно создает пульсирующее поле. Пульсирующее поле появляется при авариях, например, обрыве какой – то фазы.

Источник

Оцените статью
Разные способы