Способы получения волокон примеры

Производство химических волокон

Все волокна, производимые на свет человеком, называются « Man-made fiber». В России принято разделять химические волокна на искусственные и синтетические.

Искусственные волокна получают из природных высокомолекулярных соединений (целлюлозы, фиброина, кератина). Синтетические волокна получают из полимеров, синтезированных из продуктов переработки нефти, газа и каменного угля (бензола, фенола, синильной кислоты).
Полимер — вещество, состоящее из множества однотипных частей (молекул) от греч. «поли» — много и «мера» — части. Представьте очень длинный поезд, все вагоны которого похожи друг на друга — это и будет полимер.

Технология получения искусственных и синтетических волокон

Полимеризация . Для получения волокон твердые исходные вещества должны быть преобразованы в жидкое состояние, которое достигается нагреванием (если полимеры термопластичны) — и называется прядильный расплав, или растворением в подходящем растворителе — прядильный раствор. При производстве искусственных волокон (вискозы, купры, лайоселя) и некоторых синтетических волокон (например, акрила) применяют прядильный раствор, а при производстве полиамидных (нейлон), полиэфирных (полиэстер), полиофиновых и стеклянных волокон — прядильный расплав.
Для получения прядильного расплава исходные вещества в форме шариков или гранул закладываются в автоклав — гигантскую скороварку с большим давлением. Здесь происходит первая технологическая операция в производстве волокна — полимеризация. Находящиеся в расплаве молекулы ингредиента соединяются, образуя гигантскую цепочку, называемую линейным полимером.

Экструзия. Прядильный расплав или раствор продавливается через специальное решето — спинарет. Микроскопические отверстия в спинарете называются фильеры. Количество фильер может достигать 40000. Размер и форма фильер (круглые, квадратные, треугольные и др.) определяют внешний вид поперечного сечения нового волокна. Струйки, вытекающие из фильер, затвердевают, образуя нити.
При получении нити из расплава их затвердевание происходит в камерах, где они охлаждаются потоком инертного газа или воздуха.
При получении нитей из растворов их затвердевание может происходить в сухой среде в потоке горячего воздуха (сухой способ формования) или в мокрой среде в осадительной ванне (мокрый способ формования).

Вытягивание . Сформованные из одной фильеры нити соединяются в комплексные и подвергаются вытягиванию и термообработке. В результате вытягивания молекулярная структура полимера упорядочивается — становится более линейной, а нити более прочными и крепкими, но менее растяжимыми.
Текстурирование. После вытягивания нити подвергаются текстурированию. Целью этого процесса является придание большего объема и упругости пряже за счет превращения ее в «волнистую» — молекулы полимера, сохраняя линейную ориентацию, приобретают изогнутую форму. Это идеально подготавливает пряжу к окрашиванию.

Отделка.Затем проводится отделка нитей с целью удаления с их поверхности посторонних примесей и загрязнений и придания им различных свойств (белизны, мягкости, шелковистости, снятия электризуемости). После отделки нити перематываются в паковки и сортируются.

Технология производства химических волокон позволяет получать как непрерывную (комплексную) или, как ее еще называют, филаментную нить так и штапельное волокно, из которого затем получается пряжа. Штапельные волокна — «штапельки» — это отрезки длиной 30 — 200 мм, на которые с помощью специальных дисковых ножей нарезают непрерывную нить, чтобы новые волокна было удобно смешивать с натуральными.

Источник

Химия. 10 класс

Конспект урока

Урок № 17. Синтетические волокна

Перечень вопросов, рассматриваемых в теме: урок посвящён общим вопросам химии полимеров – синтетическим волокнам (лавсан и капрон).

Волокна – природные или химические высокомолекулярные вещества, отличающиеся от других полимеров более высокой степенью упорядоченности молекул и, как следствие особыми физическими свойствами, позволяющими использовать их для получения нитей.

Читайте также:  Желтая акация способ распространения

Искусственное волокно – это волокно, которое является продуктом химической переработки высокомолекулярных природных веществ (целлюлозы, природного каучука, белков).

Макромолекула — молекула с высокой молекулярной массой, структура которой представляет собой многократные повторения звеньев, образованных из молекул малой молекулярной массы. Число атомов, входящих в состав макромолекул, может быть очень большим (сотни тысяч и миллионы).

Мономер — это низкомолекулярное вещество, образующее полимер в реакции полимеризации или поликонденсации.

Мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов.

Полиамидные волокна – синтетические волокна, формуемые из расплавов или растворов полиамидов.

Поликонденсация — процесс синтеза полимеров из полифункциональных (чаще всего бифункциональных) соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов (воды, спиртов и т. п.) при взаимодействии функциональных групп.

Полимеризация — процесс образования высокомолекулярного вещества (полимера) путём многократного присоединения молекул низкомолекулярного вещества (мономера, олигомера) к активным центрам в растущей молекуле полимера.

Полимеры — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями.

Полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

Полиэфирное волокно — синтетическое волокно, формируемое из расплава полиэтилентерефталата или его производных.

Синтетическое волокно – это волокно, вырабатываемое из синтетических полимеров (полиамидного, полиэфирного и других волокон).

Степень полимеризации – количество мономерных звеньев в полимере.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

1. Рябов, М.А. Сборник задач, упражнений и тесто по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

Теоретический материал для самостоятельного изучения

Предпосылки создания синтетических волокон. С давних времен человек широко использовал природные волокнистые материалы. Долгое время это были натуральные материалы растительного и животного происхождения. За последние 150 лет население Земли резко возросло, что привело к возрастанию потребностей человеческого общества. Поэтому объёмов выработки природных полимеров (шерсти, льна, хлопка, конопли, шёлка) не хватало. Устранить несоответствие помогла органическая химия созданием химических волокон. Ежегодно производятся миллионы километров химических волокон.

Классификация волокон. В зависимости от происхождения и способа получения учёные делят волокна на 2 большие группы: природные (натуральные) и химические. Следовательно, волокнами называют природные или химические высокомолекулярные вещества, отличающиеся от других полимеров более высокой степенью упорядоченности молекул и, как следствие особыми физическими свойствами, позволяющими использовать их для получения нитей. Искусственное волокно – это волокно, которое является продуктом химической переработки высокомолекулярных природных веществ (целлюлозы, природного каучука, белков).

Синтетическое волокно – это волокно, вырабатываемое из синтетических полимеров (полиамидного, полиэфирного и других волокон).

Лавсан (полиэтилентерефталат) является представителем полиэфирных волокон. Лавсан является линейным жесткоцепным полимером.

Структурная формула лавсана . Способ получения. Лавсан получают реакцией поликонденсации терефталевой кислоты (1,4-бензолдикарбоновой) и этиленгликоля, которую можно выразить в общем виде:

Читайте также:  Способ накопить деньги таблица

Поскольку сложноэфирные связи –СОО– в макромолекуле повторяются многократно, то образуется полимер, который называют полиэфир. Полимер образуется ввиде смолы с упорядоченной ориентацией макромолекулы, которая достигается следующим образом: смола плавится без разложения при 80– 120 °С, затем пропускается через фильтры, обсушивается, проходя через шахту и вытягивается в нити, что усиливает их ориентацию.

Лавсан – это практичная, удобная в применении, ткань, изделия из которой доступны и долговечны. Достоинства лавсана: прочность, износостойкость (отсутствие усадки и растяжения); свето– и термостойкость; хороший диэлектрик; устойчивость к действию растворов кислот и щелочей средней концентрации; высокая термостойкость (– 70 0 до + 170 0 ). Недостатки лавсана: негигроскопичность (не впитывает воду, т.к. не может образовывать водородные связи с молекулами воды). Применяется лавсан в производстве: волокон и нитей для изготовления трикотажных изделий, и несминаемых тканей (креп, твид, тюль, кружево и другие); заменителя шерсти; пленок, бутылей, упаковочного материала, контейнеров и др.; изделий технического назначения (транспортёрных лент, приводных ремней, канатов, парусов, рыболовных сетей и тралов, бензо- и нефтестойких шлангов и др.); материалов для медицины (хирургических нитей и материалов для имплантации в сердечно-сосудистой системе). Уход за изделиями из ткани лавсан: можно чистить, стирать вручную или с помощью машинки в горячей воде до 60°С (материал хорошо отстирывается); отбеливатели применять не нужно, т.к. красители могут быть неустойчивы; изделия из лавсана можно отжимать в режиме вращения барабана с минимальными скоростями, чтобы на ткани не образовались заломы; высушивать лучше в расправленном состоянии; гладить можно утюгом с максимальной температурой нагрева 140–150°С.

Капрон является представителем полиамидных волокон. Структурная формула капрона [–NH– (CH2)5– CO– ]n.

Способ получения. В промышленности капрон получают поэтапно. Сначала реакцией поликонденсации получают производное ε– аминокапроновой кислоты – капролактам. Во время синтеза молекулы капролактама превращаются в этиламинокапроновую кислоту, которая подвергается реакции поликонденсации. Таким образом молекула образовавшегося полимера состоит из многократно повторяющихся остатков этиламинокапроновой кислоты, содержащих пептидные связи. Процесс ведется в присутствии воды, играющей роль активатора, при температуре 240– 270° С и давлении 15– 20 кгс/см 2 в атмосфере азота.

ε-аминокапроновая кислота полимер-смола

Полимер имеет вид смолы. Для получения волокон смолу плавят, пропускают через фильтры, затем подвергают специальной обработке, после которой скручивают нити.

Достоинства капрона: легкий и очень прочный материал; трудно растворимый высокоплавкий полимер с температурой плавления 180–250 °С; устойчивость к истиранию и деформации; стоек к действию разбавленных растворов кислот и щелочей; не впитывает влагу, следовательно, сохраняет прочность во влажном состоянии. Недостатки капрона: неустойчив к действию концентрированных растворов кислот– щелочей и высоких температур (нельзя изделия гладить горячим утюгом). Применяется капрон в производстве: прочных и износостойких деталей машин и механизмов; трикотажных изделий; для производства технических тканей, канатов, рыболовных сетей. Уход за изделиями из ткани капрон: изделия стирают в теплой воде с мягкими моющими средствами; не сушат в центрифуге; гладят при низкой температуре.

ПРИМЕР И РАЗБОР РЕШЕНИЯ ЗАДАНИЙ ТРЕНИРОВОЧНОГО МОДУЛЯ.

Решение задачи о способах получения и свойствах органических веществ.

Задача 1. Рассчитайте, какое количество исходного вещества потребуется для получения 702 кг терефталевой кислоты, если выход её составляет 90% от теоретического (ответ округлите до целого числа)?

2. Рассчитаем теоретическую массу терефталевой кислоты: mтеор.= mпракт. х 100%/η; mтеор. (C6H4(COOH)2) = 702 кг х 100% / 90% = 780 кг.

3. Рассчитаем количество вещества терефталевой кислоты:

4. Рассчитаем массу исходного вещества пара– ксилола.

Читайте также:  Сколько времени солить сало сухим способом с чесноком при комнатной температуре

Задача 2. Сколько килограмм этиленгликоля можно получить из 180 л (при н.у.) этилена, если выход 78% (ответ округлите до целого числа)?

2. Рассчитаем количество вещества этилена при н.у.:

3. Количественные отношения веществ по уравнению реакции 1:1, следовательно ν (этиленгликоль) = ν (C2H4) = 8 моль.

4. Рассчитаем теоретическую массу этиленгликоля:

m(теор) (элиленгликоль)= М х ν =8 моль х 62 г/моль = 496 г.

5. Рассчитаем практическую массу этиленгликоля, если теоретический выход составляет 78%:

m практ. = η (выход) х m теор. = 496 г х 0,78 = 378 г.

Источник

Способы получения волокон примеры

Химические текстильные волокна нельзя найти в природе в готовом виде. Эти волокна получаются из органических природных и синтетических полимеров. В зависимости от вида исходного сырья они разделяются на искусственные и синтетические.

Химические волокна — волокна (нити), получаемые промышленными способами в заводских условиях.

Химические волокна

Современные способы формования нитей заключаются в продавливании исходных растворов или расплавов полимеров через тончайшие отверстия фильер. Несмотря на некоторые различия в получении химических волокон и нитей разных видов, общая схема их производства состоит из следующих основных этапов:

      • Сырье для искусственных волокон получают путем выделения из веществ, образующихся в природе. Предварительная обработка — очистка от механических примесей, химическая обработка по превращению природного полимера в новое полимерное соединение.
      • Сырье для синтетических волокон получают путем реакций синтеза полимеров из простых веществ (мономеров) на предприятиях химической промышленности. Предварительной обработки не требуется.
  • Смешивание полимеров из различных партий;
  • Фильтрация раствора;
  • Обезвоздушивание раствора;
  • Введение различных добавок.
  • Продавливание прядильного раствора через отверстия фильер;
  • Затвердевание вытекающих струек;
  • Наматывание полученных нитей на приемные устройства.
        • Вытягивание приводит к увеличению прочности и улучшению текстильных свойств нити;
        • При т ермофиксации происходит частичная усадка нитей.
        • Удаление примесей и загрязнений;
        • Беление нитей или волокон;
        • Поверхностная обработка (авиваж, аппретирование, замасливание);
        • Сушка нитей после мокрого формования и обработки различными жидкостями;
        • Текстильная переработка (с кручивание и фиксация крутки, п ерематывание, с ортировка).

Химические волокна получают из растворов или расплавов.

1. Ф ормирование волокна из раствора полимера. На сегодняшний день используются два метода промышленного ф ормирование волокна из раствора полимера :

  • Сухой способ — тонкие струйки раствора затвердевают в волокна под действием циркулирующего теплого воздуха в обогреваемой шахте, и при этом растворитель улетучивается;
  • Мокрый способ — струйки раствора полимера из фильеры затвердевают в волокна под действием различных химических веществ, содержащихся в осадительной ванне.

2. Формование волокна из расплава полимера — тонкие струйки расплава из отверстий фильеры охлаждаются потоком воздуха и затвердевают в специальной шахте.

Из растворов или расплавов полимеров формируют:

  • моноволокна (одиночное волокно большой длины);
  • комплексные (филаментные) нити — пучок из большого числа тонких и очень длинных волокон (от 3 до 200), соединённых посредством крутки, используются для выработки тканей и трикотажных изделий
  • штапельного волокна (короткие отрезки тонких волокон от 30 до 200 мм) — жгуты, состоящие из очень большого количества элементарных нитей (сотни тысяч).

Благодаря новым технологиям в области производства химических волокон, производятся как «классические» волокна, так и их модифицированные виды с оптимизированными характеристиками. Модификация волокон может проводиться на любой стадии производства.

Рассмотрим более подробно Процессы, реакции, формулы получения химических волокон на следующей странице

На странице использованы материалы сайта «Искусство шить»

Источник

Оцените статью
Разные способы