Способы получения топлив масел нефти

Способы получения топлив масел нефти

Автомобильные топлива получают из нефти прямой перегонкой (первичный процесс) и деструктивными методами (вторичные процессы) ее переработки. Прямая перегонка всегда предшествует деструктивным методам переработки.

При деструктивных (химических) способах происходит изменение структуры и химического состава углеводородов, образующих нефть, а при прямой перегонке (физическом способе) нефть лишь разделяется на фракции (с определенными температурами кипения) без протекания химических реакций

Прямая перегонка нефти осуществляется в установке, представляющей собой комплекс сложных устройств, основными элементами которых являются трубчатая печь и ректификационная колонна.

Рекламные предложения на основе ваших интересов:

В результате нагрева нефти до 330—350 °С образуется смесь паров нефти и неиспарившегося жидкого остатка, которая направляется в ректификационную колонну. В ректификационной колонне происходит разделение нефтяных паров на фракции-, составляющие тот или иной нефтепродукт; причем можно отобрать в одну группу фракции, у которых температура кипения отличается всего лишь на 5-8 °С.

Тяжелые фракции нефти, поступая в колонну в жидкой фазе,, Уже в нижней ее части отделяются от паров и отводятся из нее в в аде мазута, а пары конденсируются на тарелках колонны. Чем в иже температура кипения фракций, тем выше в колонне они конденсируются.

Прямая перегонка нефти позволяет получить лишь 10—15% бензина, и только отдельные сорта нефти дают выход бензина до 20—25%, т. е. столько, сколько составляют ее фракции, выкипающие в пределах от 35 до 195 °С. Поэтому, для того чтобы обеспечить, например, Работу одного грузового автомобиля на прямогонно.м бензине в течение года, нужно переработать около 75—100 тыс. л. нефти. Для Увеличения выхода бензина и других светлых нефтепродуктов применяют деструктивные (химические) методы переработки нефти, при помощи которых можно также улучшить качество нефтепродуктов, в частности детонационную стойкость бензина.

Крекинг является основным методом деструктивной переработки нефти. При крекинге происходит расщепление высокомолекулярных углеводородов и превращение их в низкомолекулярные легкокипя-щие углеводороды, пз которых состоят бензин и другие светлые нефтепродукты.

Крекинг может происходить под действием повышенных температур (470 — 540 °С) и давлении (20—70 кгс/см2)— термический крекинг или же под действием повышенной температуры (450— 500 °С), незначительного давления (до 1,5 кгс/см2), но в присутствии катализатора — каталитический крекинг. В обоих случаях пары сырья направляются в ректификационную колонну для разделения на фракции, как и при прямой перегонке. При термическом крекинге они поступают из нагревательной печи, пройдя испаритель, а при каталитическом — еще н реактор.

Проект первой в мире промышленной установки для крекинга нефти был разработан в 1891 г. русским инженером В. Г. Шуховым.

Легко расщепляются молекулы нефти, содержащие серу и кислород. По этой причине в бензинах термического крекинга находятся нежелательные сернистые и кислородные соединения. У бензинов, получаемых термическим крекингом, недостаточно высокие оюано-е число (не более 66—74)— основной показатель качества бензина п большое содержание непредельных углеводородов (до 30—40%). Из-за непредельных углеводородов бензин термического крекинга обладает плохой стабильностью и при хранении интенсивно окисляется и осмоляется. Поэтому на современных нефтеперегонных заводах термический крекинг не применяют. Каталитический крекинг является основным деструктивным методом получения бензинов.

Катализатор, направляя процесс в нужную сторону, способствует образованию изомерных предельных углеводородов (парафинов, ароматических), а также превращению части образовавшихся непредельных углеводородов в предельные.

Читайте также:  Урок по теме способы цитирования

Каталитический крекинг позволяет получнть бензин с октановым числом до 95. Сырьем для каталитическго крекинга обычно служат керосиновые, соляровые и газойлевые фракции прямой перегонки нефти.

Качество прямогонных бензинов (особенно полученных из сернистых нефтей) улучшается при их последующем каталитическом риформинге, являющемся одним из основных процессов современного нефтеперерабатывающего завода. Каталитический риформинг протекает в атмосфере водорода при температуре 480— 520 °С, давлении примерно 30 кгс/см2 и в присутствии алюмомолибденового катализатора (гидроформинг-процесс) или алюмоплатинового катализатора (платформинг-процесс),

Бензиновые фракции получают также из углеводородных газов методами полимеризации и алкилирования. Полимерные бензины, получаемые из газов, богатых олефиновыми углеводородами, имеют высокое октановое число, но обладают недостаточной химической стабильностью

Автомобильные топлива, полученные одним из указанных способов, должны быть очищены от органических (нафтеновых) кислот, непредельных углеводородов, смолисто-асфальтеновых веществ, сернистых соединений, а также подвергнуты стабилизации для повышения их химической и физической стойкости во время транспортирования, хранения и потребления.

Применяемые для очистки продукты обладают способностью взаимодействовать с нежелательными примесями (соединениями) и образовывать вещества удаляемне из топлива путем отстаивания или Другим способом.

Содержание серы в дизельном топливе может быть снижено путем ого гидрогенизации. Здесь происходит расщепление сернистых соединении и образование сероводорода, который удаляется промывкой щелочью.

Для снижения температуры застывания дизельное топливо подвергают депарафинизацин.

Повышение химической стабильности топлив осуществляется путем торможения процессов окисления непредельных углеводородов. К бензину добавляются специальные присадки, называемые антиокислителями (ингибиторами).

Такие ингибиторы, как параоксидифениламин, древестно-смоляной антиокислитель и другие, добавляются к бензину в сотых и тысячных его долях, но они увеличивают срок хранения бензина в несколько раз.

Повышение физической стабильности бензина достигается снижением содержания растворенных в нем газообразных и жидких углеводородов с высоким давлением паров, которые легко улетучиваются при его транспортировании и хранении. При этом изменяются фракционный состав, давление насыщенных паров, испаряемость и часто детонационная стойкость бензина.

Пары бензина пропускают через стабилизационные установки (ректификационные колонны), где происходит отделение газообразных углеводородов.

Для повышения детонационной стойкости бензинов к ним добавляют присадки.

Товарное топливо, т. е. то, которое поступает в автотранспортные предприятия, чаще всего представляет собой смесь из фракций, полученных несколькими способами переработки. В частности, бензин может представлять собой сложную смесь продуктов прямой перегонки, крекинга, каталитического риформинга, полимерных бензинов и высокооктановых изопарафиновых и ароматических компонентов.

Источник

Получение топлива и смазочных материалов из нефти

Основным способом переработки нефти является ее прямая перегонка.

Перегонка – дистилляция (стекание каплями) – разделение нефти на отличающиеся по составу фракции, основанное на различии в температурах кипения ее компонентов.

Фракция – химическая составная часть нефти с одинаковыми химическими или физическими свойствами (температурой кипения, плотностью, размерами), выделяемая при перегонке.

Прямая перегонка – это физический способ переработки нефти с помощью атмосферно-вакуумной установки (рис. 1.2, принцип работы которой заключается в следующем.

В результате нагрева нефти в специальной трубчатой печи 7 до 330. 350°С образуется смесь паров нефти и неиспарившегося жидкого остатка, поступающая в ректификационную колонну 3 с теплообменниками 2.

В ректификационной колонне (рис. 1.3) происходит разделение нефтяных паров на фракции, составляющие различные нефтепродукты. При этом температура кипения смежных групп получаемых фракций может отличаться всего лишь на 5. 8˚С.

Читайте также:  Способы защиты головного мозга от ишемии при аневризме дуги аорты

Рис. 1.2 Принципиальная схема атмосферно-вакуумной установки для рямой перегонки нефти:

1 – трубчатая печь; 2 – теплообменники; 3 – ректификационная колонна; 4 – конденсатор; 5 – сепаратор; 6 – сборник соляра; 7 – вакуумная колонна

Тяжелые фракции нефти, поступая в колонну в жидкой фазе, уже в нижней ее части отделяются от паров и отводятся из нее в виде мазута.

В зависимости от химического состава нефти используют две схемы получения топлива (рис. 1.3). В первом случае в интервале температур кипения от 40 до 150°С отбирают авиационные бензины и в интервале от 150 до 300°С – керосин, из которого изготавливают реактивные топлива. Во втором случае в интервале температур кипения от 40 до 200°С отбирают автомобильные бензины и в интервале от 200 до 350°С – дизельные топлива.

Мазут, остающийся после отгона топливных фракций (60. 80% от исходной массы нефти), используют для получения масел и крекинг-бензинов.

Углеводороды с температурой кипения ниже 40°С (попутные газы) используют в качестве добавок к некоторым бензинам и в качестве сырья для получения ряда синтетических продуктов, а также как топливо для газобаллонных автомобилей.

Рис. 1.3 Схема колпачковой ректификационной колонны:

1 – металлические тарелки; 2 – отверстия для прохождения паров; 3 – колпачки; 4 – сливные трубки; 5 – цилиндрический корпус

Продуктами прямой перегонки нефти (см. рис. 1.2 являются следующие дистилляты: бензин (40. 200°С); лигроин (110. 230°С); керосин (140. 300°С); газойль (230. 330°С) и соляр (280. 350°С).

Рис. 1.4 Принципиальные схемы получения важнейших видов топлива для двигателей при перегонке нефти

Средний выход бензиновых фракций, зависящий от свойств добываемой нефти, колеблется от 15 до 25%. На долю остальных топлив приходится 20. 30%.

Лигроин, имеющий несколько большую плотность, чем бензин (тяжелый бензин), используется как дизельное топливо и в качестве сырья для получения высокооктановых бензинов.

Газойль, являющийся промежуточным продуктом между керосином и смазочными маслами, используется как топливо для дизелей, а также является сырьем для каталитического крекинга.

Продукты, получаемые способом прямой перегонки, обладают высокой химической стабильностью, так как в них отсутствуют непредельные углеводороды.

Использование для переработки нефти крекинг-процессов позволяет увеличить выход бензиновых фракций.

Крекинг – процесс переработки нефти и ее фракций, основанный на разложении (расщеплении) молекул сложных углеводородов в условиях высоких температур и давлений.

Впервые крекинг был предложен русским ученым А. А. Летним в 1875 г., а разработан – В.Г.Шуховым в 1891 г., но первая промышленная установка была построена в США.

Существуют следующие виды крекинга: термический, каталитический, а также гидрокрекинг и каталитический риформинг.

Термический крекинг используют для получения бензина из мазута, керосина и дизельного топлива.

Например, при нагревании до 500. 550°С под давлением 5 МПа углеводород цетан, входящий в состав керосина и дизельного топлива, разлагается соответственно на нормальный октан и нормальный октен, которые являются составляющими бензина:

Бензин, получаемый посредством термического крекинга, имеет недостаточно высокое октановое число (66. 74) и большое содержание непредельных углеводородов (30. 40%), т. е. он обладает плохой химической стабильностью, и его используют в основном только в качестве компонента при получении товарных бензинов.

Новые установки для термического крекинга в настоящее время уже не строят, так как получаемые с их помощью бензины при хранении окисляются с образованием смол и в них необходимо вводить специальные присадки (ингибиторы), резко снижающие темп осмоления.

Читайте также:  Классификация рецепторов по способу восприятия раздражения

Каталитический крекинг – это процесс получения бензина, основанный на расщеплении углеводородов и изменении их структуры под действием высокой температуры и катализатора.

Каталитический крекинг на заводской установке был впервые осуществлен в России в 1919 г. Н.Д.Зелинским.

В качестве сырья при каталитическом крекинге (рис. 1.4) используют газойлевую и соляровую фракции, получаемые при прямой перегонке нефти, которые нагревают до температуры 450. 525°С под давлением 0,15 МПа в присутствии алюмосиликатного катализатора, который ускоряет процесс расщепления молекул сырья и изомеризует продукты распада, превращая их в изопарафиновые и ароматические углеводороды. При этом количество олефинов снижается до 9. 10%, а октановые числа получаемых бензинов, измеренные по моторному методу, равны 78. 85.

Продукты каталитического крекинга являются обязательными компонентами при производстве бензинов марок А-72 и А-76.

Гидрокрекинг – процесс переработки нефтепродуктов, сочетающий в себе крекирование и гидрирование сырья (газойлей, нефтяных остатков и др.). Такой процесс проводится под давлением водорода 15. 20 МПа при температуре 370. 450°С в присутствии алюмокобальтомолибденового или алюмоникельмолибденового катализаторов.

Октановые числа бензиновых фракций, получаемых в результате гидрокрекинга, – 85. 88 (по исследовательскому методу измерения). Гидрокрекинг повышает также выход светлых нефтепродуктов – бензина, дизельного и реактивного топлива.

В качестве сырья для каталитического риформинга обычно используют бензиновые фракции первичной перегонки нефти, выкипающие уже при 85. 180°С.

Риформинг проводят в среде водородосодержащего газа (70. 90% водорода) при температуре 480. 540°С и давлении 2. 4 МПа в присутствии молибденового или платинового катализатора.

Рис. 1.4. Принципиальная схема каталитического крекинга:

1 – печь для нагрева сырья; 2 – испаритель; 3 – бункер с катализатором; 4 – реактор; 5 – регенератор; 6 – ректификационная колонна; 7 – газосепаратор

Риформинг при использовании молибденового катализатора называется гидроформинг, а при использовании платинового катализатора – платформинг. Последний, являющийся более простым и безопасным процессом, в настоящее время применяется значительно чаще.

Каталитический риформинг используют для получения высокооктанового компонента автомобильных бензинов (85 по моторному методу измерения и 95 – по исследовательскому).

Получение смазочных масел. Под влиянием идей Д. И. Менделеева нефтепромышленник В.И.Рогозин в 1876 г. построил около Нижнего Новгорода первый в мире завод по производству масел из мазута.

По способу производства различают дистиллятные и остаточные масла.

При получении дистиллятных масел мазут нагревают до 420. 430°С (см. рис. 1.2, создавая в вакуумной колонне разрежение в 50 мм рт. ст.

Выход дистиллятных масел из мазута составляет около 50 %, остальное – гудрон.

Остаточные масла – это очищенные гудроны. Для их получения мазут или полугудрон смешивают с сжиженным пропаном (6. 8 частей пропана на одну часть мазута) при температуре 40. 60°С. Таким образом получают авиационные масла МК-22, МС-20 и трансмиссионное масло МТ-16. МК-22 рекомендовано и для смазки агрегатов некоторых автомобилей, например грузовых автомобилей Минского автозавода.

В смазочных маслах, получаемых из мазута, кроме углеводородов обязательно содержатся нафтеновые кислоты, сернистые соединения и смолисто-асфальтовые вещества, поэтому их, как и топлива, необходимо очищать.

Источник

Оцените статью
Разные способы