Способы получения тепла от солнечной энергии

Как правильно выбрать и установить систему отопления дома от солнечной энергии

Дата публикации: 6 декабря 2018

Не секрет, что львиная доля коммунальных услуг уходит на оплату электричества, отопления и горячего водоснабжения. Добыть энергию из невозобновляемых источников — задача не из легких. Нет такой страны, где отопление стоило бы дешево. Поэтому многие жители северных и южных регионов обращают внимание на возможность использования солнечной энергии для отопления. Использовать солнечные лучи для бытовых нужд хотел бы любой владелец частного дома. Энергия, добытая таким способом, абсолютно бесплатна и неиссякаема.

Однако не все так просто. Для одной лампочки не нужна большая мощность. Но для семьи из трех человек необходимо от 200 до 500 квт в месяц на бытовые приборы. Насколько реально оснастить свой дом современной системой отопления на основе солнечных батарей? Для начала рассмотрим плюсы и минусы альтернативного отопления.

Преимущества и недостатки отопления солнечной энергией

Кроме экономии средств, на какие еще достоинства можно обратить внимание?

  • Энергонезависимость. Вы не зависите от цен на газ, нефть или уголь. Экономическая конъюнктура в стране также не влияет на количество тепла в доме.
  • Экологичность и безопасность. Не нужно опасаться утечки газа или отходов от применения обычных видов топлива.
  • Установка не требует специальных разрешений или согласований.

К недостаткам следует отнести следующие:

  • большие вложения на первых порах. Обычно система отопления окупается за 3-4 года. Но оборудование стоит недешево. Один модуль может стоить в пределах от 2200 до 17000 рублей. Так как мощность должна быть высокой, то количество панелей должно быть внушительным. Подсчитано, что на установку альтернативной системы отопления может уйти до 200000 р.;
  • зависимость от географического положения и времени года. В средней полосе России использование солнечной энергии для отопления жилого дома оправдано с апреля по сентябрь. В этот период на 90% покрывается потребность в энергии. Зимой в отопительный сезон с ноября по март — только на 10 — 50%. Все дело в количестве солнечных дней в году — их должно быть не менее 200;
  • издержки эксплуатации. Необходимо следить за состоянием коллекторов и батарей. Чистка, замена деталей может отнять много времени, сил и повлечь дополнительные расходы;
  • в некоторых случаях необходимо оборудовать солнечные батареи системами слежения.

Несмотря на недостатки, альтернативные способы солнечного нагрева воды для отопления завоевывают все большую популярность. Они долговечны и быстро окупаются.

Специалисты советуют разрабатывать систему отопления на солнечных батареях еще до постройки дома, включая его в проект. Какие же материалы и оборудование лучше всего использовать при установке своего “солнечного отопления”?

Солнечные батареи

Принцип работы батарей для нагрева воды солнечной энергией основан на поглощении света фотоэлементами. Они преобразуют энергию солнца в постоянный электрический ток, который затем подается на инвертор. Здесь постоянный ток преобразуется в переменный. Все бытовые приборы и электрический водонагреватель работают на переменном токе. Аккумулятор накапливает поступающую энергию для использования ночью или в пасмурные дни.

Энергонезависимый дом можно узнать по крыше, покрытой фотоэлектрическими панелями. Один квадратный метр модуля производит 120-250 Вт. Для того чтобы обеспечить электричеством дом, необходимо покрыть панелями 25 кв.м. площади. Для отопления необходимо еще больше энергии. Так что не только крыша дома, но и дополнительные постройки необходимы для достижения нужной мощности.

Солнечные батареи на кремниевых полупроводниках обычно используются в “солнечных” регионах. Но не только о странах ближе к экватору идет речь. В северных широтах, например, на Чукотке, использовать фотоэлементы очень эффективно из-за большого количества солнечных дней.

Нагрев воды с помощью солнечной энергии происходит в специальном баке. При достижении нужной температуры горячая вода вытесняет холодную и заполняет отопительную систему.

Главный недостаток в том, что солнечные батареи не позволяют непосредственно преобразовать энергию солнца в тепло. Для этой цели используют гелиоколлекторы.

Солнечные коллекторы

В случае с гелиоколлекторами солнечные лучи воздействуют не на полупроводник, а на теплоноситель. Он нагревается и отдает тепло системе отопления. Так происходит отопление солнечной энергией. Различают два вида коллекторов:

  • Плоские солнечные коллекторы оснащены системой трубок, подсоединенных к специальной пластине. Теплоноситель из воды и гликоля проходит по трубкам, нагревается и идет на выход. Преимущество этого вида коллекторов состоит в том, что их можно сделать своими руками. Однако, при всей простоте, подходит этот вариант для южных регионов. Вода нагревается до 45-60 градусов максимум. Для холодных зим этого недостаточно.
  • Трубчатые коллекторы подходят для северных широт. Змейка из трубок оснащена надежной теплоизоляцией. Потерь тепла не происходит, как в случае с плоскими аналогами. Система теплообменных трубок также различается. Обычная система U-type считается более надежной, но не работает ночью. Система Heat-pipe идеально подходит для стран с постоянными туманами и суровыми зимами, так как требует незначительного количества солнечной энергии. Но нужно уточнить, какое вещество используется в системе. Так как производительность может отличаться. Оба вида коллекторов используют насос. Носитель тепла может двигаться самотеком. Но эффективность солнечного нагрева воды для отопления в этом случае низкая.
Читайте также:  Амортизация по нематериальным активам начисляется способами линейным

При выборе того или иного способа солнечного отопления не стоит забывать о том, что полностью избавиться от традиционных методов обогрева вряд ли получится. Разумнее всего использовать комбинированные варианты.

Правильный выбор системы отопления солнечной энергией

Солнечные батареи можно совмещать с гелиоколлекторами. Фотоэлементы подойдут для выработки электричества для насоса и бытовых приборов. Более мощные солнечные коллекторы полностью покроют потребность в теплоснабжении.

Газовый котел необходимо оставить как резервный вариант. В некоторых случаях альтернативное отопление может стать дополнением к основному методу отопления, а не наоборот. Например, в случае поломки.

Существует вариант сделать отопление от солнечной энергии своими руками. Но количество солнечных дней не всегда соответствует действительности. Величина инсоляции для каждого региона известна, но полагаться на метеослужбу опасно.

Поэтому перед установкой альтернативной системы теплоснабжения необходимо тщательно продумать все детали. В этом могут помочь специалисты в этой сфере. С их помощью можно найти оптимальное решение.

  • Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики
  • Солнечная энергетика захватывает новые стихии
  • Ложка дегтя в бочке с солнечными батареями
  • Какая жизнь без света?

Вам нужно войти, чтобы оставить комментарий.

Источник

Способы получения электрики и тепла из солнечного излучения

Рубрика: Технические науки

Дата публикации: 28.03.2014 2014-03-28

Статья просмотрена: 6381 раз

Библиографическое описание:

Струнин, И. В. Способы получения электрики и тепла из солнечного излучения / И. В. Струнин. — Текст : непосредственный // Молодой ученый. — 2014. — № 4 (63). — С. 265-267. — URL: https://moluch.ru/archive/63/9893/ (дата обращения: 18.11.2021).

Из возможных альтернатив, которые могли дополнить или даже заменить традиционную энергетику является солнечное излучение, как естественное неисчерпаемый источник энергии. Задумайтесь, на Землю приходится 1020 Вт солнечной энергии на один квадратный метр, только 2 % которой эквивалентны энергии, полученной путем сгорания условного топлива. Поэтому, вполне возможно, что в будущем солнечная энергия может стать основным источником света и тепла на Земле. Перспективы развития данного вида энергии не знает границ.

Главное препятствие на пути к широкому распространению солнечной энергетики — зависимость от суточного ритма, сезонной изменчивости и погоды. Чтобы усилить поток солнечной энергии, нужно собирать ее с больших площадей и запасать на будущее в аккумуляторах. Пока это удается реализовать в так называемой малой энергетике, которая призвана обеспечивать светом и теплом жилые дома и небольшие предприятия.

Существует два основных способа преобразования солнечной энергии: фототермический и фотоэлектрический. Первый способ более широко используемый, а другой высокотехнологичный, но дороже.

• Наиболее широко на сегодня используется фототермический способ преобразования солнечной энергии. В данном случае теплоноситель, обычно вода, нагревается до высокой температуры и используется для отопления помещения. Солнечная батарея устанавливается на крыше дома так, чтобы солнечный свет наиболее эффективно направлено на его площадь. Поскольку энергия солнечного излучения распределяется на большую площадь (то есть, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь устройство для ее сбора — коллектор с достаточной поверхностью. Простейшее устройство такого рода — это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. Между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и др. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше, чем температура окружающей среды. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому, коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.

Сложным и дорогостоящим коллектором является вогнутое зеркало, которое сосредоточивает солнечное излучение в малом объеме около определенной геометрической точки — фокуса. Поверхность зеркала выполнена из металлизированной пластмассы либо составлена ​​из многих малых плоских зеркал, прикрепленных к большому параболическому подставки. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу -это позволяет собирать большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов достигает 3000 ºС и выше.

Читайте также:  Экономика это наука изучающая способы организации хозяйственной деятельности

Стоит отметить, что существуют плоские и вакуумные коллекторы. Обычно системы с плоскими коллекторами используются сезонно — весна -осень. Зимой эффективность работы плоских коллекторов снижается за счет теплопотерь в окружающую среду. Вакуумные коллекторы эффективны и при низких температурах окружающей среды. Если для плоских коллекторов максимальная температура нагрева составляет 80–90 ºС, то в вакуумных — может превышать 100 ºС. В водогрейных солнечных установках, работающих в течение года, более широкое распространение имеют вакуумные солнечные коллекторы, хотя можно использовать и плоские коллекторы с эффективной теплоизоляцией. В любом случае следует уделить внимание теплоизоляции труб, передающих тепло.

— Фотоэлектрический способ. По мнению экспертов, будущее солнечной энергии с прямым преобразованием солнечного излучения в электрический ток с помощью полупроводниковых фотоэлементов — солнечных батарей. В фотоэлектрических преобразованиях солнечной энергии используется кремний с добавками других элементов.

Эффективность современных кремниевых фотоэлементов достаточно высока. Их КПД достигает 10–20 %, а чем выше КПД, тем меньше нужна площадь солнечных батарей.

Используя энергию солнца, можно ежегодно экономить традиционные источники отопления:

— до 75 % — для горячего водоснабжения в течение года;

— до 95 % — для горячего водоснабжения при сезонном использовании;

— до 50 % — только с целью отопления;

— до 80 % — с целью поочередного отопления.

Тепловые насосы сегодня является приоритетом лишь узкого круга наших соотечественников. Это объясняется высокой их себестоимости и затратами на их установку. На сегодня цены в Виннице на данные технологии колеблются от 5 тыс. до 10 тыс. Понятно, что такая разница между цифрами включает много аспектов: производитель (отечественное производство или импортируемый товар), модель, технические особенности насоса и т. д. Но перспектива удешевления тепловых насосов при условии более массового использования.

Получение электроэнергии с помощью фотоэлементов. Для этой цели применяют кремниевые солнечные батареи, КПД которых доходит до 20 %. Но стоимость получения чистого кремния достаточно велика. Кремний, в котором на 10 кг продукта приходится не более 1 грамма примесей стоит столько же, сколько уран для электростанций, хотя запасы последнего в 100 000 раз меньше запасов кремния. В то же время, «хорошего» кремния в мире добывают в 6 раз меньше, чем такого же урана.

Из одной тонны песка, в котором содержится 500 кг кремния получают 50–90 кг в кремния. При этом на получение 1 кг расходуется около 250 кВт-час электроэнергии. По новой технологии, разработанной немецкой фирмой Siemens еще в 1979 г. энергозатраты падают на порядок, и выход продукта увеличивается в 10–15 раз. Стоимость получения кремния при этом падает до 10–15 $ за килограмм. Простой песок для этой технологии не подходит. Здесь нужны «особо чистые кварциты», залежи которых в значительном объеме, в основном, находятся в России.

Такие батареи можно устанавливать на спутниках, автомобилях, крыльях самолета, встроить их элементы в часы, калькулятор, ноутбук. Срок их службы составляет 30 лет. За это время элемент, на изготовление которого ушел 1 кг в кремния, может дать столько же электроэнергии, сколько ее может быть получено при использовании 100 т нефти на ТЭС или 1 кг обогащенного урана на АЭС.

При втором методе устанавливаются на территории в несколько тысяч квадратных метров зеркала- гелиостаты, которые возвращаясь вслед за солнцем направляют лучи солнечного света на емкость с теплоприемником (водой). Вода нагревается, превращается в пар, который крутит турбину, а последняя вращает генератор тока.

Гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла (фокусирование солнечного излучения на емкости с водой для дальнейшего использования нагретой воды в отоплении или в паровых электрогенераторах).

Преимущества солнечной энергетики — Общедоступность и неисчерпаемость источника.

Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Однако, этот недостаток не так велик, например, гидроэнергетика выводит из пользования значительно большие участки земли. К тому же фотоэлектрические элементы на крупных солнечных электростанциях устанавливаются на высоте 1,8–2,5 метра, что позволяет использовать земли под электростанцией для сельскохозяйственных нужд, например, для выпаса скота.

Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и морского и для высотного базирования.

Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата. В разных местностях среднее количество солнечных дней в году может очень сильно отличаться.

Технические проблемы. Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, мощность электростанции может быстро и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков нужно или использовать эффективные электрические аккумуляторы (на сегодняшний день это нерешенная проблема), либо строить гидроаккумулирующие станции, которые тоже занимают большую территорию, или использовать концепцию водородной энергетики, которая также пока далека от экономической эффективности.

Читайте также:  Лучший способ выучить язык это общаться с его носителем

Проблема зависимости мощности солнечной электростанции от времени суток и погодных условий решается в случае солнечных аэростатных электростанций.

Высокая цена солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990–2005 гг. цены на фотоэлементы снижались в среднем на 4 % в год.

Недостаточный КПД солнечных элементов (вероятно, будет вскоре увеличен).

Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.

Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных. Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.

Экологические проблемы. Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30–50 лет), и массовое их применение поставит в ближайшее время сложный вопрос их утилизации.

В последнее время начинает активно развиваться производство тонкопленочных фотоэлементов, в составе которых содержится всего около 1 % кремния. Благодаря низкому содержанию кремния тонкопленочные фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность. Так, например, в 2005 г. компания «Shell» приняла решение сконцентрироваться на производстве тонкопленочных элементов, и продала свой ​​бизнес по производству кремниевых фотоэлектрических элементов.

Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы изготавливаются из доступных материалов: сталь, медь, алюминий и т. д., то есть без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и полученной на нем энергии.

Высокотемпературные коллекторы концентрируют солнечные лучи с помощью зеркал и линз и, как правило, используются для производства электроэнергии.

Солнечная энергия для обогрева, охлаждения, вентиляции и технологических нужд может быть использована для покрытия части расходов на энергию. Тепловая масса материалов сохраняет солнечную энергию в течение дня, и освобождает эту энергию когда становится холоднее. Всего в тепловой массы относятся каменные материалы, бетон и вода. При размещении тепловых масс следует рассмотреть ряд факторов, таких как климат, уровень дневного света, теней и других условий. В условиях правильно подключения тепловые массы могут пассивно поддерживать комфортную температуру при сокращении потребления. Тепловая энергия массы почвы также может быть использована для сохранения тепла между сезонами и позволяет использовать солнечную тепловую энергию для отопления помещений в зимнее время.

Солнечная тепловая энергия в качестве активного солнечного отопления. Типичная конструкция бытовой солнечной системы отопления состоит из солнечной панели (или солнечного коллектора) с теплообменной жидкостью, проходящего через него, транспортируя собранную тепловую энергию для полезного применения, как правило, к горячей воде цистерны или домашних радиаторов. Солнечные панели расположен в месте с хорошим уровнем освещения в течение дня, чаще всего на крыше здания. Насос толкает теплообменной жидкости (часто только очищенную воду) с помощью панели управления. Тепло таким образом собирается и передается на сберегательные контейнера.

Также возможно использовать пассивное солнечное отопление, не нуждаясь электрического или механического оборудования, и может рассчитывать на дизайн и структура дома для сбора, хранения и распределения тепла по зданию. Некоторые пассивные системы используют незначительное количество обычной энергии для управления заслонками, ставнями, ночными изоляционными и другими устройствами, повышающими уровень сбора, хранения, использования и снижения нежелательного теплообмена солнечной энергии.

Принцип работы современных фотоэлементов базируется на полупроводниковом pn переходе. При поглощении фотона в области, прилегающей к pn переходу, создается пара носителей заряда: электрон и дырка. Одна из этих частиц является неосновным зарядом и с большой вероятностью проникает через переход. В результате созданные благодаря поглощению энергии фотона заряды разделяются в пространстве и не могут рекомбинировать. Как следствие нарушается равновесие плотности зарядов. При подключении элемента к внешней нагрузке в цепи протекает ток.

Потери в солнечном элементе

Основные необратимые потери энергии в фотоэлементах связанные с:

— Отражением солнечного излучения от поверхности преобразователя;

— Прохождением части излучения через фотоэлемент без поглощения в нем;

— Рассеянием на тепловых колебаниях кристаллической решетки избыточной энергии фотонов;

— Рекомбинацией фотопара, образовавшейся на поверхностях и в объеме фотоэлемента;

— Внутренним сопротивлением преобразователя,

— Некоторыми другими физическими процессами.

Солнечные элементы служат для электроснабжения в отдаленных районах Земли или на орбитальных станциях, где невозможно использовать электросеть, а также для питания калькуляторов, радиотелефонов, зарядных устройств, насосов.

Источник

Оцените статью
Разные способы