Для получения сжиженных углеводородных газов
Объект исследования: принципиальная схема установки компрессионной обработки попутных нефтяных газов с целью получения сжиженных углеводородных газов (СУГ).
Результаты, полученные автором: проведен анализ термодинамических параметров для различных установок, участвующих в процессе получения СУГ.
Сжиженные углеводородные газы в настоящее время являются топливом с очень широким диапазоном применения. Системы СУГ экономически выгодны при мелких рассредоточенных потребителях, расположенных вдали от магистралей газопроводов природного газа. Благодаря «двойственной» природе, с одной стороны, сжиженные газы имеют преимущества жидкости при транспортировке и хранении (легкая транспортабельность, малый занимаемый объем, в следствие возможность перевозки большего количества газа и т.д.), а с другой стороны, находясь в газообразном состоянии, они приобретают преимущества, свойственные газам при их распределении по сетям и сжигании.
Производство СУГ выполняется по разным технологиям в зависимости от исходного сырьевого продукта (нефти, попутного нефтяного газа или природ-ного газа).
Основным источником для получения СУГ являются нефтяные попутные газы, газоконденсатных месторождений и газы, получаемые в процессе переработки нефти, потому что они намного богаче высшими углеводородами.
Производство СУГ включает в себя процессы: подготовки (очистка газов от примесей и осушка от влаги); предварительного сжатия газа; охлаждения газа; выделения тяжелых углеводородов (газовый бензин — С5+) и сжижение.
В практике переработки попутных нефтяных газов применяют следу-ющие основные способы отбензинивания (выделение углеводородов от С3 и выше):
Абсорбционный метод, основанный на различной растворимости содержащихся в газе углеводородов в жидких нефтепродуктах. Применяют абсорбент, в котором пропан, бутан и углеводороды бензинового ряда лучше растворяются, чем метан. После контакта абсорбента с попутным газом в колонне абсорбера обогащенный углеводородами абсорбент поступает в десорбер, где из него выпаривают пропан, бутан и бензин с последующей их конденсацией. Давления, применяемые из разных установок, в зависимости от состава газа и поставленной цели колеблются в широких пределах – от 4 до 35 ата. Обычно температуру масла на выходе из абсорбера держат не выше 40 °.
Компрессионный способ отбензинивания основан на сжатии до 25 ата и последующем охлаждении попутного газа до температуры конденсации. При этом тяжелые углеводороды конденсируются (стабильный (газовый) бензин) и затем отделяются от газа в сепараторах. Для более полного извлечения из попутного газа углеводородов, начиная с С3 и выше, применяют низкотемпературную ректификацию. Выделенный из попутного газа нестабильный бензин поступает на газофракционирующую установку, где он в ректификационной колонне (или в нескольких последовательно работающих колоннах) разделяется на пропан, бутан.
Низкотемпературная сепарация — технологический процесс, предназ-наченный для выделения из потока природного газа в промысловых условиях углеводородного конденсата и влаги при низких температурах. Кроме того, сепарация газа при низкой температуре является отличным средством для дегидратации его, так как под действием сравнительно низких температур содержащиеся в газе пары воды конденсируются в капельную жидкость, переходя затем в кристаллогидраты, которые, как и жидкие углеводороды, в сепараторах отделяются от газа.
Можно утверждать, что низкотемпературная сепарация является высокоэффективным комплексным процессом, освобождающим газ от воды и «выбивающим» из него высококипящие компоненты. Универсальность и высокая эффективность низкотемпературной сепарации газа в сочетании с практически бесплатным холодом, получаемым на промыслах в результате использования энергии, заключенной в самих газовых потоках высокого (100–200 ат) давления, делает этот процесс незаменимым почти на всех газодобывающих промыслах, где требуется осушить и обезжирить газ.
Добыча сжиженного углеводородного газа из попутного нефтяного газа очень перспективна, т.к. при добыче нефти этот газ является неотъемлемой частью. Сжижение ПНГ может осуществляться как в стационарных установках, так и в передвижных, непосредственно на скважинах, что позволяет избежать неоправданных потерь попутного газа в атмосферу или во время сжигания в факелах.
Материал поступил в редколлегию 20.05.2017
УДК 620.9
Научный руководитель: доцент кафедры «Промышленная теплоэнергетика», аспирант Сапич В.Н.
Эффективность теплоотдачи теплообменной
поверхности, сформированной из поперечно
Источник
Сжиженные газы. Методы производства
Смеси углеводородов (пропана, пропилена, бутана, бутилена и небольших количеств этана и этилена), находящихся при относительно небольших давлениях или при пониженных температурах в жидком состоянии, а при нормальных условиях — газообразном, составляют группу сжиженных углеводородных газов. Их хранят и транспортируют в жидком, а используют в газообразном виде. Сырьем для производства сжиженных газов являются попутные нефтяные газы, жирные газы газоконденсатных месторождений и газы переработки нефти* Сжиженные газы могут иметь и искусственное происхождение.
Поскольку попутный нефтяной газ представляет собой многокомпонентную смесь из легких и тяжелых углеводородов, то задачей газобензинового производства является разделение этой смеси на следующие отдельные фракции:
- Этан — Отбензиненный газ;
- Бутан — Сжиженный газ;
- Пентан — Газовый бензин.
Технология такого разделения основана на различной упругости насыщенных паров (рис. 1.2) и на различии в давлениях конденсации отдельных компонентов смеси. При изменениях температуры или объема такой двухфазной системы (пар — жидкость) равновесие ее нарушается и тут же восстанавливается. Например, при постоянстве температуры сжатие паровой фазы приводит к конденсации части паров, а при увеличении объема испаряется часть жидкости. В обоих случаях давление паровой фазы, соответствующее данной температуре, остается неизменным.
Аналогично при сохранении постоянства объема паровой фазы повышение температуры сопровождается испарением части жидкости с соответствующим повышением давления, т. е. упругости насыщенных паров углеводорода. Охлаждение двухфазной системы при неизменности объема влечет понижение упругости насыщенных паров.
Промышленными методами производства сжиженных газов являются компрессионный, адсорбционный и абсорбционный. Принципиальная сущность технологии этих способов может быть рассмотрена на упрощенных схемах соответствующих установок.
Компрессионный метод основан на различии давлений и температур конденсации отдельных компонентов смеси углеводородных газов, составляющих попутный нефтяной газ. В этом случае исходный попутный газ (рис. 1.3) после очистки в сепараторе 1 от взвешенных частиц нефти, влаги и пыли сжимается в компрессоре 2 до давления 17—20 кгс/см 2 и затем последовательно охлаждается в конденсаторах 3 и 5. В процессе первой стадии охлаждения из смеси конденсируются и собираются в сепараторе сырого бензина 4 наименее упругие пары пентана, в конденсаторе 5 конденсируются пары пропана и бутана. После разделения в сепараторе 6 сконденсированные пропан и бутан поступают в емкости сжиженного газа, а сохранившие газообразное состояние метан и этан по газопроводу отбензиненного газа направляются к потребителю.
Адсорбционный (углепоглотителъный) метод основан на способности некоторых твердых пористых тел (активированного угля, силикагеля и др.) избирательно удерживать (адсорбировать) на поверхности пор и микропор тяжелые углеводороды и выделять их при последующем нагреве и увлажнении. Основным аппаратом адсорбционной установки (рис. 1.4) является адсорбер 1, заполненный активированным углем. Очищенный исходный попутный газ проходит в адсорбере снизу вверх через слой угля и насыщает его поры тяжелыми углеводородами, а легкие углеводороды — метан и этан, не осевшие в порах угля, выходят из адсорбера в газопровод отбензиненного газа. По окончании насыщения угля углеводородами через адсорбер сверху вниз подается водяной пар, который, нагревая и увлажняя уголь, осуществляет десорбцию тяжелых углеводородов и уносит их в виде паров. Пары воды и углеводородов проходят через конденсатор 2 и поступают в сепаратор 3, в нижней части которого скапливается конденсат водяного пара, над ним — более легкий конденсат пентана, а в паровом пространстве — пары пропана и бутана. Через регуляторы уровня вода из сепаратора сбрасывается в канализацию, пентан — в емкости сырого бензина, а пары пропана и бутана поступают под купол газгольдера 4. По мере скопления в газгольдере пары пропана и бутана сжимаются компрессором 5 до 17—20 кгс/см 2 и после охлаждения в конденсаторе 6 накапливаются в виде конденсата в сепараторе сжиженного газа 7, а из него периодически перемещаются в сборные емкости.
Для восстановления адсорбционной активности угля его надо просушить и охладить. Для этого дутьевой вентилятор 8 нагнетает в адсорбер выбрасываемые через свечу 10 горячий воздух, нагреваемый в калорифере 9, а затем — холодный воздух, пропускаемый помимо калорифера. Непрерывность действия установки обеспечивается комплектованием групп адсорберов, по три в каждой. Это позволяет одновременно осуществлять в группе все основные операции: адсорбцию, десорбцию и регенерацию активных адсорбционных свойств угля.
Абсорбционный (маслопоглотителъный) метод основан на способности масел (например, солярового) в холодном виде избирательно растворять в себе (абсорбировать) тяжелые углеводороды, а при нагревании выделять их обратно.
Очищенный попутный нефтяной газ (рис. 1.5) поступает в нижнюю часть абсорбера 1, представляющего собой колонну с тарельчатыми насадками, в которой снизу вверх движется газ, а противотоком сверху вниз стекает по тарелкам масло. Конструкция тарелок обеспечивает хороший контакт газа с маслом, в результате чего масло растворяет основную массу тяжелых углеводородов. Легкие углеводороды поступают в верхнюю часть абсорбера и по газопроводу отбензиненного газа направляются к потребителю. Скапливающееся в нижней части абсорбера масло, насыщенное углеводородами, подается в подогреватель 2, затем десорбер 3. Выделяющиеся из нагретого масла тяжелые углеводороды поступают в компрессор 4, где сжимаются до 17—20 кгс/см 2 . Охлаждаются они в две стадии — в конденсаторах 5 и 7. После первой стадии в сепараторе 6 сырого бензина накапливается жидкий пентан, а в сепараторе 8 — сжиженная пропан-бутановая фракция. Освободившееся от углеводородов нагретое масло из нижней части десорбера 3 насосом 9 перекачивается через холодильник 10 в верхнюю часть абсорбера 1 для повторения цикла.
Из рассмотренных методов в газобензиновом производстве наиболее распространен метод масляной абсорбции, отличающийся простотой установки, большой производительностью и достаточно высокой степенью извлечения тяжелых углеводородов из исходных газов.
Источник: « Основы газоснабжения » Н.А. Скафтымов
Источник
Способ получения сжиженных углеводородных газов и установка для его осуществления
Владельцы патента RU 2463534:
Изобретение относится к технике получения сжиженных углеводородных газов и их очистки от метанола и может быть использовано в газовой, нефтяной, нефтеперерабатывающей, нефтехимической и химической отраслях промышленности. Способ получения сжиженных углеводородных газов включает стабилизацию деэтанизированного газового конденсата путем выделения из него углеводородных газов, их охлаждение, смешивание сжиженных углеводородных газов (СУГ) с водой, отмывки метанола и фазовое разделение на СУГ и водометанольный раствор. При этом на стадии отмывки смесь СУГ с водой диспергируют в водной фазе, затем проводят коалесценцию мелкодиспергированных капель водометанольного раствора, после чего осуществляют фазовое разделение. Установка для получения сжиженных углеводородных газов содержит последовательно соединенные ректификационную колонну стабилизации газового конденсата, аппарат охлаждения, смесительное устройство, по меньшей мере, одну емкость отмывки метанола и разделительную емкость. При этом, по меньшей мере, одна емкость отмывки метанола и разделительная емкость выполнены в виде секций емкости-фильтра, разделенного двумя перегородками с размещенными в них коалесцирующими фильтр-патронами с образованием трех секций во внутренней полости упомянутого фильтра, причем две секции представляют собой емкости отмывки метанола, а третья секция — разделительную емкость. Использование изобретения позволит минимизировать капитальные и текущие затраты на установку за счет ее упрощения. 2 н. и 3 з.п. ф-лы, 3 ил.
Изобретение относится к технике и технологии получения сжиженных углеводородных газов, к которым относятся смесь пропана и бутана технических, пропан технический, бутан технический (далее СУГ), и их очистки от метанола и может быть использовано в газовой, нефтяной, нефтеперерабатывающей, нефтехимической и химической отраслях промышленности.
Основная доля получаемых отечественными компаниями СУГ производится из газового конденсата, выделяемого на установках комплексной подготовки газа (УКПГ), работающих по технологии низкотемпературной сепарации, где метанол используется в качестве ингибитора гидратообразования. Большая часть метанола отводится с УКПГ в виде водометанольной смеси после трехфазных разделителей «углеводороды — метанольная вода — газ выветривания». Однако в результате растворимости метанола в газовом конденсате остаточное содержание метанола в продуктах дальнейшей переработки газового конденсата может изменяться в достаточно широком диапазоне.
Данная проблема усугубляется тем, что в процессе переработки газового конденсата с получением стабильного конденсата (СК) и товарных сжиженных газов (смеси пропана и бутана технических) практически весь водометанольный раствор переходит в состав сжиженных газов. Это приводит к существенному повышению концентрации растворимого метанола в товарных сжиженных газах до 18000 ppm. Co временем значительная часть водометанольного раствора выделяется из СУГ в виде отдельной фазы. Частично отделение происходит на товарных складах производителей СУГ, где водометанольный раствор «подрезается» и отводится в дренажную систему. Однако значительная часть BMP выделяется уже после отгрузки СУГ потребителям. В этом случае потребители вполне обосновано предъявляют претензии производителям и требуют возмещения понесенных убытков.
В настоящее время большинство производителей СУГ пытаются решать данную проблему путем применения метода экстракции метанола водой.
Для выполнения данной задачи чаще всего используют огромные резервуары-отстойники, насосное оборудование подачи СУГ и воды. Эффективность данного способа очистки СУГ крайне низкая и, как правило, не приводит к желаемым результатам. Более того, в данном случае возникает необходимость в строительстве дополнительно узла подготовки химочищенной воды и утилизации большого количества сточных вод, что при отсутствии гарантий выполнения контрактных обязательств перед заказчиком накладывает негативный отпечаток на рентабельность производства в целом.
Известен способ (патент РФ №2286194) очистки жидких углеводородов от метанола, находящихся в виде эмульсии, включающий нагрев эмульсии, разделение путем сепарации нагретой эмульсии на жидкие углеводороды и водный раствор метанола и последующий их раздельный отвод.
Недостатками описанного способа являются большие энергетические затраты на нагрев эмульсии и низкая эффективность процесса сепарации из-за плохого осаждения водного раствора метанола в жидких углеводородах, легкие компоненты которых при нагреве испаряются и (или) кипят.
Наиболее близким является способ (RU 2289608, опубл. 20.12.2006) очистки жидких углеводородов от метанола, включающий стабилизацию жидкого углеводородного сырья путем выделения из него легкой фракции — сжиженных углеводородных газов (СУГ), экстракцию метанола из СУГ, сепарацию водного раствора метанола и СУГ и адсорбционную очистку СУГ.
Установка для реализации данного способа содержит ректификационную колонну для разделения жидкого углеводородного сырья, например нестабильного газового конденсата (НГК), на легкую фракцию — СУГ и тяжелую фракцию, например стабильный газовый конденсат (СГК), соединенную через охлаждающее устройство с экстракционной колонной для отмывки метанола от СУГ, соединенное с разделителем, из которого отделенный водометанольный раствор подается в емкость, а СУГ — в блок адсорбционной очистки.
Однако данный способ ввиду своей многостадийности является достаточно сложным и дорогостоящим, подходящим только для случаев, когда предъявляются очень жесткие требования по содержанию метанола в СУГ (не более 50 ppm).
Задачей предлагаемого изобретения является минимизация капитальных и текущих затрат на установку по получению СУГ с содержанием водометанольного раствора не более 6000 ppm за счет упрощения схемы установки путем исключения блока адсорбционной очистки и использования рефлюксной емкости вместо блока отмывки, включающего несколько аппаратов.
Поставленная задача решается способом получения сжиженных углеводородных газов, включающим стабилизацию деэтанизированного газового конденсата путем выделения из него углеводородных газов, их охлаждение, смешивание сжиженных углеводородных газов (СУГ) с водой, отмывку метанола и фазовое разделение на СУГ и водометанольный раствор, согласно которому на стадии отмывки смесь СУГ с водой диспергируют в водной фазе, затем проводят коалесценцию мелкодиспергированных капель водометанольного раствора, после чего осуществляют фазовое разделение.
При этом смешивание СУГ с водой осуществляют предпочтительно в вихревом режиме.
Задача также решается установкой для получения сжиженных углеводородных газов, содержащей последовательно соединенные ректификационную колонну стабилизации газового конденсата, аппарат охлаждения, смесительное устройство, по меньшей мере, одну емкость отмывки метанола и разделительную емкость, при этом, по меньшей мере, одна емкость отмывки метанола и разделительная емкость выполнены в виде секций емкости-фильтра, разделенного двумя перегородками с размещенными в них коалесцирующими фильтр-патронами с образованием трех секций во внутренней полости упомянутого фильтра, причем две секции представляют собой емкости отмывки метанола, а третья секция — разделительную емкость.
Кроме того, смесительное устройство предпочтительно представляет собой устройство вихревого типа.
При этом каждый коалесцирующий фильтр-патрон выполнен из гидрофильного стекловолокна.
На фиг.1 приведена технологическая схема установки для получения СУГ.
На фиг.2 приведена схема емкости-фильтра.
На фиг.3 — сечение А-А на фиг.2.
Установка для получения сжиженных углеводородных газов включает ректификационную колонну 1 стабилизации газового конденсата и емкость-фильтр 2 для отмывки метанола и фазового разделения водной и углеводородной фаз. Выход колонны 1 для легких фракций соединен с аппаратом 3 воздушного охлаждения, который в свою очередь соединен с смесительным устройством 4 вихревого типа, в который подводится вода и который соединен со входами емкости-фильтра 2. Выход емкости-фильтра 2 для СУГ соединен посредством насоса 5 с входом орошения колонны 1 и с линией отбора готового продукта. Кубовая часть колонны 1 соединена через насос 6 с огневым подогревателем 7, соединенным с нижней частью колонны 1.
Сырье — деэтанизированный газовый конденсат (ДЭК) — поступает в колонну 1 стабилизации. В колонне 1 поддерживаются следующие рабочие параметры: давление 1,2-1,7 МПа; температура в кубе колонны 140-160°C; температура вверху колонны 50-60°C. Подвод тепла в колонну 1 осуществляется путем циркуляции с помощью технологического насоса 6 кубового продукта (стабильного газового конденсата — СГК) колонны 1 через змеевики огневого подогревателя 7. Балансовое количество стабильного газового конденсата отводится с куба колонны 1 в товарно-сырьевой склад.
Сжиженные углеводородные газы с верха колонны 1 стабилизации поступают в блок аппаратов 3 воздушного охлаждения с частотным регулированием (АВО). Далее сконденсировавшиеся СУГ с температурой 30-40°C поступают в смесительное устройство 4, куда также поступает технологическая вода, предназначенная для отмывки метанола. Затем смесь воды и СУГ поступает в емкость-фильтр 2, одновременно выполняющую функции и рефлюксной емкости (фиг.2).
Емкость-фильтр 2 (рефлюксная емкость) разделена двумя перегородками 8 на три секции: первые две (по краям) образуют емкости 9, 10 для отмывки метанола; средняя — емкость 11 для фазового разделения СУГ и водометанольного раствора. Смесь СУГ и воды в емкости-фильтре 2 находится в двухфазном состоянии во всех трех секциях.
Смесь СУГ и технологической воды поступает в водную фазу крайних секций — емкостей 9 и 10. Подача СУГ осуществляется через специальные насадки, позволяющие обеспечить наиболее эффективное смешение воды и СУГ, в результате чего из последних отмывается большая часть метанола. Затем и водометанольный раствор, и СУГ поступают через коалесцирующие фильтр-патроны 12, установленные в перегородках 8, в среднюю секцию — емкость 11 для фазового разделения.
Коалесцирующие фильтр-патроны 12 представляют собой металлические каркасы, покрытые стекловолокном, обладающим гидрофильными свойствами. Мелкодиспергированные капли воды, попадая на стекловолокно и скапливаясь, смачивают его поверхность, и уже укрупненные вымываются общим потоком в среднюю секцию емкости-фильтра 2.
В средней секции емкости-фильтра 2 при температуре 30-40°C и давлении 1,1-1,6 МПа происходит четкое разделение поступающей из боковых секций смеси на водную и углеводородную фазы.
Водная фаза, включающая технологическую воду и водометанольный раствор, поступает в сборник 13, из которого отводится в специализированные складские емкости, откуда дозировано отводится на установку выделения.
Углеводородная фаза (СУГ) из средней (по высоте) части емкости-фильтра 2 отводится на прием технологического насоса 5, с нагнетания которого частично возвращается обратно в колонну 1 стабилизации в качестве орошения, а балансовое количество отводится в товарно-сырьевой склад.
Преимущества данной схемы заключаются в ее простоте, обеспечивающей минимизацию капитальных затрат на процесс отмывки водометанольного раствора. Простота технических решений данной схемы позволяет осуществлять их внедрение с использованием существующих аппаратов (рефлюксных емкостей) установок по выделению СУГ.
1. Содержание водометанольного раствора в СУГ без использования блоков экстракционной отмывки и адсорбции гарантировано снижается с 18000 до 5000-6000 ppm.
2. Благодаря совмещению процессов стабилизации газового конденсата и отмывки водометанольного раствора в одном блоке достигается сокращение расхода материалов и снижение капитальные и эксплуатационные затраты.
3. В настоящее время подобные блоки отмывки метанола производительностью по 280 тыс. и 420 тыс. тонн в год расположены на Пуровском ЗПК дочернего общества ОАО «НОВАТЭК».
1. Способ получения сжиженных углеводородных газов, включающий стабилизацию деэтанизированного газового конденсата путем выделения из него углеводородных газов, их охлаждение, смешивание сжиженных углеводородных газов (СУГ) с водой, отмывку метанола и фазовое разделение на СУГ и водометанольный раствор, отличающийся тем, что на стадии отмывки смесь СУГ с водой диспергируют в водной фазе, затем проводят коалесценцию мелкодиспергированных капель водометанольного раствора, после чего осуществляют фазовое разделение.
2. Способ по п.1, отличающийся тем, что смешивание СУГ с водой осуществляют в вихревом режиме.
3. Установка для получения сжиженных углеводородных газов, содержащая последовательно соединенные ректификационную колонну стабилизации газового конденсата, аппарат охлаждения, смесительное устройство, по меньшей мере, одну емкость отмывки метанола и разделительную емкость, отличающееся тем, что по меньшей мере одна емкость отмывки метанола и разделительная емкость выполнены в виде секций емкости-фильтра, разделенного двумя перегородками с размещенными в них коалесцирующими фильтр-патронами с образованием трех секций во внутренней полости упомянутого фильтра, причем две секции представляют собой емкости отмывки метанола, а третья секция — разделительную емкость.
4. Установка по п.3, отличающаяся тем, что смесительное устройство представляет собой устройство вихревого типа.
5. Установка по п.3, отличающаяся тем, что каждый коалесцирующий фильтр-патрон выполнен из гидрофильного стекловолокна.
Источник