- Получение белого света
- Как получают белый свет свечения светодиода
- Что такое белый свет
- Цветовое пространство
- Цветопередача
- Как получить белый свет с использованием светодиодов
- Из чего можно собрать белый свет
- Основные способы получения
- Основные выводы
- Способы получения белого света
- Свет и цвет: основы основ
- Мы окружены
- От света к цвету и обратно
- Цвет объектов
Получение белого света
Каждому, кто хоть немного знаком со светодиодами, известно, что как таковой белый светодиод не существует. Вместе с тем, все мы видим в продаже многочисленные светодиодные лампы и светильники,излучающие белый свет. О способах достижения этого и пойдет речь ниже.
На сегодняшний день науке известно три основных способа получения белого света от диодов:
1. Смешивание цветов с использованием технологии RGB (красный-зеленый-синий). Светодиоды трехцветов плотно размещаются на одной матрице, а их излучение смешивается при помощи линзыили другой оптической системы. В результате такого смешивания получается белый свет, а глаз воспринимает конструкцию как белый светодиод.
2. Второй способ схож с технологией RGB – здесь также используется смешение цветов. Но в этом случаена синий светодиод наносится специальный люминофор желто-зеленого или красно-зеленого оттенка.При прохождении синего света через люминофор и образуется свет, близкий по виду к белому.
3. Третий способ – разновидность второго. В данном случае используется ультрафиолетовый светодиод,на который наносятся слои трех люминофоров. Как и при RGB, происходит смешение цветов иполучается белый светодиод.
У каждого способа получения белого светодиода есть свои недостатки и достоинства. К примеру, технология RGB позволяет получить не только белый цвет, но и любой другой оттенок при изменении тока на разныхучастках. Таким образом, необходимо управлять этим процессом – или программным способом, или вручную,через изменение температур. В результате RGB-матрицы используются широко в светодинамическихсистемах.
Кроме того, огромное количество светодиодов RGB может обеспечить достаточно высокий световой потоки значительную осевую силу света. Но при этом световое пятно в результате аберраций оптической системыимеет разный цвет по краям и в центре, а из-за неодинакового отвода тепла с середины матрицы и с еекраев светодиоды нагреваются по-разному. Таким образом, по-разному меняется и их цвет со временем — впроцессе старения цвет «плывет». Это явление хотя и можно скомпенсировать, но сделать это весьма сложнои дорого.
Белый светодиод с люминофором гораздо дешевле, чем RGB-матрицы, и при этом дает качественныйбелый цвет. Но есть и недостатки: у таких светодиодов меньше светоотдача из-за поглощения части светалюминофором; довольно сложно проконтролировать равномерность слоя люминофора; люминофор стареетбыстрее, чем непосредственно сам светодиод.
Источник
Как получают белый свет свечения светодиода
С точки зрения физики белое свечение можно получить при смешивании семи базовых цветов. В светотехнике используется иной подход. Чаще всего смешиваются 2 или 3 разноцветных свечения. При оригинальных оттенках люминофоров можно получить свет различных необычных оттенков.
Что такое белый свет
Глаза людей воспринимают видимое электромагнитное излучение в определенном диапазоне. Ультрафиолетовые, инфракрасные и рентгеновские лучи тоже световые, но никто их не видит из-за слишком большой или слишком короткой длины волны. Белый свет создают световые волны с различной длиной. Самые короткие красные, самые длинные фиолетовые. Волны остальных цветов располагаются посередине.
В природе белый свет непрерывный (излучаемый фотосферой Солнца) и линейный, состоящий по меньшей мере из трех видов разноцветного излучения. При определенных обстоятельствах белый свет расщепляется на отдельные части спектра. Например, проходя через призму, луч разделяется на 7 частей с различной длиной волны и частотой колебаний. Если пропустить этот спектр через линзу, снова можно получить белый свет.
Еще Ньютон определил, что белый свет состоит из всех цветов, в черном цветов нет, Световые и цветовые волны способны складываться. Согласно закону физики, белое свечение вызывает отражение от какого-то предмета всех световых волн. Чтобы получить белый свет в светотехнике, используются 3 основных цвета: красный, зеленый и синий.
Цветовое пространство
Цветовым пространством называют абстрактную модель палитры, которая построена так, чтобы любой цвет стал точкой с определенными координатами, а конкретные координаты соответствовали одному цвету. Для упрощения измерений и расчетов создается изображение, называемое цветовой диаграммой (графиком).
RGB матрица – трехмерное цветовое пространство, в котором для каждого отдельного цвета выбран набор трех координат. Существует множество цветовых пространств, но размерность всегда определяют координаты.
Справка! В светотехнике не требуются пространства с высокой размерностью, например, ProPhoto, используемое для создания ксерокопий различных документов.
Цветопередача
Понятием «цветопередача» в светотехнике характеризуют влияние спектра свечения ламп на восприятие цвета объекта глазами человека. Отношение восприятия при искусственном и естественном освещении характеризуется коэффициентом CRI с максимальным значением 100 Ra. Человек воспринимает цвета окружающих его предметов наиболее натурально при значении 80-100 Ra.
Любой источник искусственного света должен обеспечить максимально точное восприятие цветов и оттенков. При расчетах учитываются требования к функциональности лампы и ее местоположение в помещении. Ra определяется при помощи восьми эталонных цветов, определенных DIN 6169.
Как получить белый свет с использованием светодиодов
Для того, чтобы получить белое свечение от светодиода, существуют 3 метода:
- перемешивание при помощи технологии RGB;
- нанесение люминофора трех цветов (красного, зеленого, голубого) на линзу диода, светящегося ультрафиолетовым цветом;
- нанесением люминофора зеленого (желто-зеленого) и красного люминофора на диод, светящийся голубым цветом.
Технология RGB при изготовлении светодиодов дает возможность получить белый свет различных оттенков, отличающихся по температуре. Но у свечения различный оттенок посередине и по краям. В процессе эксплуатации цвет расплывается, что не всем производителям удается это компенсировать.
Светодиоды с люминофорами дешевле, свечение качественное, но толщину слоя люминофора сложно контролировать, люминофор стареет быстрее, чем диоды, из-за него снижается светоотдача
Из чего можно собрать белый свет
Кроме технологии RGB существуют другие методы, позволяющие получить белый свет светодиодов, базирующиеся на смешивании:
- 7-и цветов радуги;
- чистого красного и голубого;
- желтого и синего;
- красного и желто-зеленого.
Основные способы получения
Не все производители при изготовлении светодиодного источника света используют кристаллы, излучающие базовые цвета. Другие варианты иногда оказываются более интересными. Например, белый свет светодиодов можно получить при смешивании желтого и синего, но CRI получается –13 Ra. Если свечение желтого расширить, добавив красный и желто-зеленый, Ra = 61.
Существую и другие уникальные технологии производителей светодиодов:
- Cree TrueWhite – синий, желто-зеленый и красный;
- Osram Brilliant Mix – красный, зеленый и оранжевый.
Справка! Уникальной можно считать технологию Osram EQ white, в которой предусмотрено смешивание синего и желто-зеленого. Оттенок белого в излучении светодиодов получается зеленоватый, Ra = 65.
Основные выводы
Основная цель производителей светодиодов – повысить светотехнические характеристики своей продукции, в том числе цветопередачу. Для этого не всегда достаточно RGB. Показатели меняются так же при замене оттенка люминофора. В результате белое свечение светодиодов приобретает различные оттенки.
Источник
Способы получения белого света
Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.
Второй способ заключается в том, что на поверхность светодиода СД, излучающего в ультрафиолетовом диапазоне UV, наносится три люмино-фора, излучающих, соответственно, голубой B, зеленый G и красный R свет. На фоне сплошного дифракционного спектра отчетливо видны участки повышенной интенсивности голубого, зеленного и красного цвета.
В третьем способе — желтый Y или зеленый G + красный R люминофор наносятся на голубой B светодиод, так что два или три излучения смешиваются, образуя белый W или близкий к белому свет. На фоне сплошного дифракционного спектра отчетливо видны участки повышенной интенсивности: голубого B и желтого Y; голубого B, зеленного G и красного R цвета.
Недостатки СИД с люминофором: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод.
Если светодиоды с люминофором используются для освещения каких-либо объектов белым светом, то RGB – синтез позволяет создавать любую цветовую гамму и открывает бездну возможностей в разработке новых художественных приемов. RGB – синтез позволяет создавать установки с динамически меняющимися цветом и яркостью. Произвольно меняющийся во времени и пространстве цветной свет становится инструментом, доступным каждому художнику, архитектору, светодизайнеру.
Лекция 15 21. ГЕЛИЙ-НЕОНОВЫЙ ЛАЗЕР
Одним из самых распространенных в настоящее время является гелий – неоновый лазер, созданный в 1961 г. А. Джаваном (США). Чтобы понять принцип работы лазера, необходимо рассмотреть несколько ключевых вопросов.
Процессы поглощения и излучения атомами квантов света. Согласно теории Бора атом в стационарном состоянии может находиться бесконечно долго, при этом он не поглощает и не излучает энергию. В этом состоянии атом обладает минимальной энергией En. Под действием внешних возмущений (соударения, поглощение кванта энергии и т.д.) атом переходит в возбужденное состояние с энергией Em. Возбужденный атом пребывает в этом состоянии примерно 10 –8 с, после этого он самопроизвольно переходит в стационарное состояние, испуская квант света, частоту которого можно определить из постулата Бора:
где Em и En – энергия атома в двух его состояниях, h-постоянная Планка.
Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называют спонтанным. На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка 10 –3 с. Такие уровни называются метастабильными. При спонтанном переходе характеристики излученного фотона (направление распространения, поляризация, фаза) произвольные.
Однако переходы между энергетическими уровнями атома не всегда связаны с поглощением или испусканием фотонов. Атом может приобрести или отдать часть своей энергии и перейти в другое квантовое состояние в результате взаимодействия с другими атомами или столкновений с электронами. Такие переходы называются безизлучательными.
В 1916 году А. Эйнштейн предсказал, что переход электрона в атоме с верхнего энергетического уровня на нижний может происходить под влиянием внешнего электромагнитного поля, частота которого равна собственной частоте перехода (1). Возникающее при этом излучение называют вынужденным или индуцированным.
Вынужденное излучение принципиально отличается от спонтанного излучения. При индуцированном переходе атом излучает электромагнитную волну, у которой частота, фаза, поляризация и направление распространения точно такие же, как и у волны, вызвавшей этот переход.
С точки зрения квантовой теории, в результате взаимодействия возбужденного атома с фотоном, частота которого равна частоте перехода, появляются два совершенно одинаковых фотона-близнеца. В результате вынужденного испускания фотонов амплитуда волны, распространяющейся в среде, возрастает. Индуцированное излучение является физической основой работы лазеров.
На рис. 2 схематически представлены возможные механизмы переходов между двумя энергетическими состояниями атома с поглощением или испусканием кванта света.
Рис.2. Условное изображение процессов: (а) — поглощения; (b) — спонтанного излучения; (с) — индуцированного излучения кванта.
Чтобы создать активную среду, в которой были бы возможны индуцированные переходы необходимо создать условия, при которых на более высоких энергетических уровнях находилось больше атомов, чем на стационарных. Такое распределение атомов по энергетическим состояниям называется инверсным.
В естественных условиях нижние энергетические уровни заселены более плотно, чем верхние, а число атомов N, находящихся в состоянии с энергией Е описывается распределением Больцмана:
где k- постоянная Больцмана, Т – абсолютная температура, С – константа, зависящая от природы вещества.
С учетом (2) для инверсных сред должно выполнятся условие
где: En, Em – энергия атомов на энергетических уровнях n и m, причем En
Дата добавления: 2015-11-18 ; просмотров: 1415 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Свет и цвет: основы основ
Мы окружены
Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).
Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.
На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.
От света к цвету и обратно
Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.
Рисунок 2 – Прохождение луча солнечного света через призму.
Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.
Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.
Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).
Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.
Рисунок 3 — Результат наложения красного, зеленого и синего цветов.
Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.
Рисунок 4 – Отсутствие светового излучения
Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.
Рисунки 5 и 6– Зависимость параметров цвета от источника излучения
Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).
Цветовой тон (hue)
– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.
– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».
– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый.
– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.
Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).
Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.
Рисунок 7 – Палитра цветов Adobe Photoshop
Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.
Цвет объектов
Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.
Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.
Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.
— Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.
— Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.
— И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.
Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).
Рисунок 8 – Отражение зеленой волны спектра
Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.
Рисунок 9 – Отражение желтой волны спектра
Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.
Рисунок 10 – Отражение всех волн спектра
Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.
В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.
Источник