Способ выплавки рельсовой стали
Владельцы патента RU 2291204:
Изобретение относится к металлургии, в частности к способам выплавки рельсовой стали в дуговых электросталеплавильных печах. Способ включает выплавку стали сериями с подачей в дуговую электросталеплавильную печь металлошихты, содержащей металлолом и жидкий чугун, расплавление, окислительный период, раскисление в печи стали алюминием на всех плавках серии, а раскисление шлака в печи на последней плавке в серии — порошком кокса, дробленого ферросилиция и гранулированного алюминия, выпуск стали в ковш без шлака, присадку в ковш при выпуске шлакообразующей смеси и необходимых раскислителей и легирующих. В ковш в качестве шлакообразующей смеси присаживают смесь, состоящую из извести и ванадийсодержащего конвертерного шлака, при соотношении (1,5-2,5):(0,3-0,8), соответственно, в количестве 1,8-3,3% от массы жидкой стали, и необходимые кремний- и марганецсодержащие ферросплавы. Изобретение позволяет увеличить сквозное извлечение ванадия до 80-90%. 1 табл.
Изобретение относится к черной металлургии, в частности к способам выплавки рельсовой стали в дуговых электросталеплавильных печах.
Известен выбранный в качестве прототипа способ выплавки рельсовой стали — прототип [1], включающий подачу в дуговую электросталеплавильную печь в качестве металлошихты металлолома и жидкого чугуна, расплавление, окислительный период, раскисление в печи стали алюминием и шлака порошком кокса, дробленого ферросилиция и гранулированного алюминия, выпуск плавки в ковш, присадку в ковш при выпуске твердой шлакообразующей смеси, состоящей из извести и плавикового шпата, отличающийся тем, что выплавку стали производят сериями, причем металлошихту первой плавки в серии дают массой на 10-15% больше массы металлошихты последующих плавок, а массу металлошихты последней плавки в серии уменьшают на 10-15%, окислительный период проводят до получения стали с содержанием углерода не менее 0,60% и температуры выше ликвидуса 180-240°С; причем сталь раскисляют на всех плавках серии алюминием в количестве 0,07-0,10% от массы металлошихты, а раскисление шлака в печи порошком кокса, дробленного ферросилиция и гранулированного алюминия в количестве, соответственно, каждого 0,09-0,10% от массы металлошихты проводят на последней плавке в серии, при выпуске первой и последующих плавок отсекают печной шлак, а последнюю плавку выпускают с печным шлаком, при выпуске плавок в ковш присаживают твердую шлакообразующую смесь, состоящую из извести и плавикового шпата, при соотношении (1,0-1,5): (0,3-0,5), соответственно, в количестве 3-3,3% от массы жидкой стали, и необходимые раскислители и легирующие.
Существенными недостатками данного способа выплавки рельсовой стали являются
— низкая сквозная степень усвоения ванадия при производстве стали;
— высокая себестоимость стали в связи с применением дорогостоящих ванадийсодержащих ферросплавов.
Известны способы производства ванадийсодержащих сталей с использованием ванадийсодержащего конвертерного шлака, причем ванадийсодержащий шлак присаживается в печь 2.
Существенными недостатками данных способов являются
— большая длительность плавки из-за проведения восстановления ванадия из ванадийсодержащего шлака в печи;
— высокий расход электроэнергии, электродов и огнеупоров;
— низкая степень извлечения ванадия из шлака;
— пониженный уровень физико-механических свойств в связи со значительной концентрацией в стали кислорода и загрязненностью стали неметаллическими включениями эндогенного типа.
Желаемыми техническими результатами изобретения являются
— повышение сквозного извлечения ванадия и снижение себестоимости стали.
Для этого предлагается способ выплавки рельсовой стали, включающий выплавку стали сериями с подачей в дуговую электросталеплавильную печь металлошихты, содержащей металлолом и жидкий чугун, расплавление, окислительный период, раскисление (в печи стали алюминием на всех плавках серии, а раскисление шлака в печи на последней плавке в серии — порошком кокса, дробленого ферросилиция и гранулированного алюминия), выпуск стали в ковш без шлака, присадку в ковш при выпуске шлакообразующей смеси и необходимых раскислителей и легирующих, отличающийся тем, что в ковш в качестве шлакообразующей смеси присаживают смесь, состоящую из извести и ванадийсодержащего конвертерного шлака, при соотношении (1,5-2,5):(0,3-0,8), соответственно, в количестве 1,8-3,3% от массы жидкой стали, и необходимые кремний и марганецсодержащие ферросплавы.
Соотношение и количество смеси выбрано, исходя из степени восстановления ванадия, а также исходя из рафинирующей и теплоизолирующей способности ковшевого шлака. При количестве шлака менее 1,8% от массы основность шлака не обеспечивает полного восстановления ванадия и велики теплопотери через шлак, при количестве шлака более 3,3% от массы необходимо значительное количество тепла для расплавления шлакообразующей смеси, а повышение кратности шлака приводит к снижению степени восстановления ванадия из шлака.
Заявляемый способ выплавки рельсовой стали был реализован при выплавке стали в дуговых электросталеплавильных печах ДСП-100И7. Выплавка проводилась по следующей схеме. Завалка первой плавки в серии по металлозавалке была на 10-15 т больше последующих завалок, а последней в серии плавки на 10-15 т меньше. Завалка состояла из 80-90 т металлолома и 3-8 т извести. Заливка чугуна в количестве 30-35 т проводилась из чугуновозного ковша посредством мостового крана при открытом своде после проплавления «колодцев» и частичного осаживания металлолома в печи. Окисление углерода проводили в печи до концентрации не менее 0,60% посредством продувки стали через сводовую водоохлаждаемую фурму, при этом температура в печи изменялась в пределах 1650-1710°С. Далее проводили раскисление стали чушковым алюминием в количестве 70-100 кг, а на последней в серии плавке проводили дополнительно раскисление шлака порошком кокса, дробленого ферросилиция и гранулированного алюминия по 100 кг каждого. При выпуске в ковш присаживали твердую шлакообразующую смесь, состоящую из извести (1500 и 2500 кг) и ванадийсодержащего конвертерного шлака (300-800 кг), и необходимые раскислители и легирующие. На опытных плавках использовался ванадийсодержащий конверторный шлак следующего химического состава: 16,0-18,8% V2О5; 10-13,5% SiO2; 2,0-2,3% CaO; P≤0,05%; 9,8-11,0% MnO. Параметры опытных плавок приведены в таблице.
Заявляемый способ обеспечивает снижение себестоимости стали на 4-8 долларов на тонну и увеличивает сквозное извлечение ванадия с 60-70 при использовании ферросплавов до 80-90%. при применении заявляемого способа.
1. Пат. РФ 2235790, С 21 С 5/52, 7/076.
2. А.С. 2133782, С 21 С 5/52.
3. А.С. 605839, С 21 С 5/52.
4. А.С. 836125, С 21 С 5/52.
5. А.С. 1046294, С 21 С 5/52.
Таблица Параметры опытных плавок | |||||
№ плавки | № в серии | Марка стали | Смесь (известь и ванадийсодержащий шлак) | Масса смеси, % | Усвоение ванадия, % |
1 | 1 | НЭ76Ф | 1,4:0,25 | 1,8 | 70 |
2 | 2 | НЭ76Ф | 1,6:0,4 | 2,0 | 87 |
3 | 3 | НЭ76Ф | 1,5:0,3 | 1,8 | 86 |
4 | 4 | НЭ76Ф | 1,6:0,5 | 2,1 | 88 |
5 | 1 | НЭ76Ф | 2,5:0,4 | 2,9 | 90 |
6 | 2 | НЭ76Ф | 2,6:0,8 | 3,2 | 92 |
7 | 3 | НЭ76Ф | 2,0:0,5 | 2,5 | 89 |
8 | 4 | НЭ76Ф | 2,0:0,5 | 2,5 | 88 |
9 | 5 | НЭ76Ф | 2,0:0,8 | 2,8 | 95 |
10 | 6 | НЭ76Ф | 2,0:0,7 | 3,2 | 95 |
11 | 7 | НЭ76Ф | 2,4:0,6 | 3,0 | 93 |
12 | 1 | НЭ76Ф | 2,3:0,8 | 3,3 | 92 |
13 | 2 | НЭ76Ф | 1,9:0,4 | 2,3 | 86 |
14 | 3 | НЭ76Ф | 2.6:0,3 | 2,9 | 70 |
15 | 4 | НЭ76Ф | 2,5:0,6 | 3,4 | 88 |
прототип | НЭ76Ф | 60-70 |
Способ выплавки рельсовой стали, включающий выплавку стали сериями с подачей в дуговую электросталеплавильную печь металлошихты, содержащей металлолом и жидкий чугун, расплавление, окислительный период, раскисление в печи стали алюминием на всех плавках серии, а раскисление шлака в печи на последней плавке в серии — порошком кокса, дробленого ферросилиция и гранулированного алюминия, выпуск стали в ковш без шлака, присадку в ковш при выпуске шлакообразующей смеси и необходимых раскислителей и легирующих, отличающийся тем, что в ковш в качестве шлакообразующей смеси присаживают смесь, состоящую из извести и ванадийсодержащего конвертерного шлака, при соотношении (1,5-2,5):(0,3-0,8), соответственно, в количестве 1,8-3,3% от массы жидкой стали и необходимые кремний- и марганецсодержащие ферросплавы.
Источник
Способ получения рельсовой стали
Изобретение относится к области черной металлургии, в частности к способам получения рельсовой стали. Способ получения рельсовой стали включает выплавку стали в печи, ее выпуск в ковш, раскисление и последующую продувку в ковше газообразным азотом через щелевую донную огнеупорную фурму, имеющую толщину щели до 0,1 мм в течение 15 — 30 мин с расходом 40 — 65 нм 3 /ч, при давлении (6 — 8) 10 5 Па и общим расходом азота 0,10 — 0,30 нм 3 /т жидкой стали. Технический результат — повышение ударной вязкости стали при положительных и отрицательных температурах за счет увеличения и стабилизации содержания азота в стали и снижение длительности плавки за счет сокращения восстановительного периода в связи с переносом процесса легирования стали азотом из печи в ковш. 1 табл.
Изобретение относится к черной металлургии, в частности к способам получения рельсовой стали. Известен выбранный в качестве прототипа способ выплавки рельсовой стали низкотемпературной надежности по ТУ 1-5233-93 марки НЭ76В, содержащей 0,71-0,82% C, 0,75-1,05% Mn, 0,25-0, 45% Si, 0,05-0,08% V, 0,008-0,020% N в дуговых электросталеплавильных печах [1]. Рельсы, изготовленные из данной стали низкотемпературной надежности, отличаются повышенными значениями ударной вязкости при отрицательной температуре и, в связи с этим широко используются на северном и восточном направлениях железных дорог РФ. Повышенная ударная вязкость при положительных и отрицательных температурах достигается за счет микролегирования стали азотом, которое приводит к увеличению количества карбонитридов и измельчению зерна, а вследствие дополнительного выделения нитридной фазы — к дисперсному упрочнению.
Однако при выплавке данной марки стали в дуговых электросталеплавильных печах необходимо создавать специальные условия для поглощения азота, что увеличивает длительность плавки. При этом конечное содержание азота в стали варьируется в широких пределах.
Известны также способы легирования стали газообразным азотом при продувке стали в ковше [2,3]. Однако при использовании данных способов для повышения усвоения азота в зону продувки вводится алюминий. Данная операция недопустима при выплавке рельсовой стали, т.к. при этом алюминий реагирует не только с азотом, но и с кислородом. Соединения алюминия с кислородом — включения глинозема, загрязняют сталь, образуя недопустимую длину строчки, являющуюся браковочным признаком [4].
Известны два способа продувки [5]: через верхнюю погружаемую фурму и донную огнеупорную пористую фурму (или через пористое днище ковша). При этом продувка через пористую донную огнеупорную фурму предпочтительнее для насыщения стали азотом, т.к. образующиеся пузыри азота, проходя через весь объем ковша более длительное время за счет своего незначительного размера, всплывают и соответственно взаимодействуют с жидкой сталью. Эффективному усвоению азота способствует большая поверхность раздела азот-жидкий металл. Тем не менее для глубокого насыщения стали при продувке через донные пористые фурмы требуется значительная длительность продувки, что приведет к повышенному расходу азота для азотирования стали.
Техническим результатом является повышение ударной вязкости стали при положительных и отрицательных температурах (за счет увеличения и стабилизации содержания азота в стали) и снижение длительности плавки (за счет сокращения восстановительного периода в связи с переносом процесса легирования стали азотом из печи в ковш).
Для достижения этого газообразный азот подают через щелевую донную огнеупорную фурму, имеющую толщину щели до 0,1 мм в течение 15-30 минут с расходом 40-65 нм 3 /ч, при давлении (6-8) 10 5 Па и общим расходом азота 0,10-0,30 нм 3 /т жидкой стали.
Продувка стали через щелевую донную огнеупорную фурму обеспечивает по сравнению с пористой донной фурмой значительное измельчение образующихся на поверхности пузырей. Толщина щели менее 0,1 мм обеспечивает критические скорости истечения газа из сопла фурмы с образованием наиболее мелких пузырей, в то время как при продувке через пористые фурмы возникает пузырьковый режим, обеспечивающий формирование крупных пузырей [6].
При длительности продувки менее 15 минут количество введенного в сталь азота (при заявляемых расходах 40-65 нм 3 /ч) недостаточно для полного связывания ванадия в нитриды ванадия, а при увеличении длительности более 30 мин возможно большое насыщение стали азотом. При расходе менее 40 нм 3 /ч сталь в ковше слабо перемешивается, а при расходе более 65 нм 3 /ч наблюдаются интенсивные выбросы стали и шлака из ковша.
Общий расход азота 0,10-0,30 нм 3 на тонну жидкой стали обеспечивает получение требуемого (0,008-0,020% N) содержания азота в стали.
Пример осуществления способа.
Заявляемый способ был опробован при производстве рельсовой стали марки НЭ76В. Сталь выплавлялась в 100-тонных дуговых электросталеплавильных печах ДСП-100И7. Во время выпуска до наполнения 1/3 высоты ковша присаживались ванадийсодержащие ферросплавы из расчета введения ванадия на 0,05-0,08% и силикокальция из расчета 600-850 г/т стали. Далее ковш с металлом транспортировался на установку продувки стали азотом, где через донные щелевые огнеупорные фурмы сталь обрабатывалась азотом при давлении в тракте (6-8)10 5 Па и расходе 40-65 нм 3 /ч в течение 15-30 минут. Данные по химическому составу и изменению ударной вязкости стали при положительных и отрицательных температурах в зависимости от времени продувки и расхода азота приведены в таблице 1.
Анализ данных показывает, что при использовании заявляемого способа по сравнению с прототипом за счет увеличения и стабилизации содержания азота повышается ударная вязкость рельсовой стали при положительных и отрицательных температурах, а в связи с переносом процесса легирования стали азотом из печи в ковш сокращается длительность плавки.
Литература 1. Технологическая инструкция ОАО «КМК» ВТИ 103-ЭС-508-97 «Выплавка и разливка на состав рельсовой стали в ЭСПЦ-2» — Новокузнецк, 1997. — 15 с.
2. Авт. св. СССР N 1440049, кл. C 21 C 7/00.
3. Авт. св. СССР N 1345634, кл. C 21 C 7/00.
4. ГОСТ 24182-80 «Рельсы железнодорожные широкой колеи типов Р75, Р65 и Р50 из мартеновской стали» 5. Поволоцкий Д.Я., Кудрин В.А., Вишкарев А.Ф. Внепечная обработка стали — М.: «МИСИС», 1995. — 256 с.
6. Сизов А.М. Газодинамика и теплообмен газовых струй в металлургических процессах — М.: Металлургия, 1987. — 256 с.
Способ получения рельсовой стали, включающий выплавку стали в печи, ее выпуск в ковш, раскисление и последующую продувку стали в ковше газообразным азотом через фурму, отличающийся тем, что газообразный азот подают через щелевую донную огнеупорную фурму, имеющую толщину щели до 0,1 мм в течение 15 — 30 мин с расходом 40 — 65 нм 3 /ч, при давлении (6 — 8)10 5 Па и общим расходом азота 0,10 — 0,30 нм 3 /т жидкой стали.
Источник