Способы получения полимеров эмульсионная цепная полимеризация

Методы получения полимеров

Полимеры получают методами полимеризации или поликонденсации.

Полимеризация (полиприсоединение). Это реакция образования полимеров путем последовательного присоединения молекул низкомолекулярного вещества (мономера). Большой вклад в изучении процессов полимеризации внесли отечественные ученые С.В.Лебедев, С.С.Медведев и др. и зарубежные исследователи Г.Штаудингер, Г.Марк, К.Циглер и др. При полимеризации не образуются побочные продукты и соответственно элементный состав макромолекул не отличается от состава молекул мономеров. В качестве мономеров используются соединения с кратными связями: С=С, C=N, C=С, С=О, С=С=О,С=С=С, C=N, либо соединения с циклическими группами, способными раскрываться, например:

В процессе полимеризации происходит разрыв кратных связей или раскрытие циклов у мономеров и возникновение химических связей между группами с образованием макромолекул, например:

По числу видов участвующих мономеров различают гомополиме-ризацию (один вид мономера) и сополимеризацию (два и более видов мономеров).

Полимеризация — самопроизвольный экзотермический процесс (DG Читайте также: Фосфор: просто и понятно о физических и химических свойствах, применении, влиянии на организм

Таким образом, регулирование длины и соответственно молекулярной массы макромолекул можно осуществлять с помощью инициаторов, ингибиторов и других веществ. Тем не менее передача и обрыв цепи могут происходить на различных этапах роста цепи, поэтому макромолекулы имеют различную молекулярную массу, т.е. полидисперсны. Полидисперсность является отличительной особенностью полимеров.

Радикальная полимеризация служит промышленным способом синтеза многих важных полимеров таких, как поливинилхлорид [-СН-СНСl-]n, поливинилацетат [-СН2-СH(ОСОСНз)-]n, полистирол [-СН2-СН(С6Н5)-]n, полиакрилат [-CH2-C(CH3)(COOR)-]n, полиэтилен [-СН2-СН2-]n, полидиены [-CH2-C(R)=CH-CH2-]n, и различных сополимеров.

Ионная полимеризация также происходит через стадию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соответственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служат электроноакцепторные соединения, в том числе протонные кислоты, например H2SO4 и НСl, неорганические апротонные кислоты (SnCl4, TiCl4, A1Cl3 и др.), металлоорганические соединения А1(С2Н5)3 и др. В качестве инициаторов анионной полимеризации используются элекронодонорные вещества и соединения, в том числе щелочные и щелочноземельные металлы, алкоголяты щелочных металлов и др. Часто одновременно используется несколько инициаторов полимеризации.

Рост цепи можно записать уравнениями реакции:

при катионной полимеризации и

при анионной полимеризации

Рассмотрим в качестве примера катионную полимеризацию изо-бутилена с инициаторами АlСl3 и Н2О. Последние образуют комплекс

А1Сl3 + Н2О « Н+[АlOНСlз]-

Обозначив этот комплекс формулой H+X- процесс инициирования полимеризации можно представить в виде

СН3 СНз

H2C=C+ +H+X-®H3C-C+ X-

Возникающий комплексный катион вместе с противоионом X- образует макроион, который обеспечивает рост цепи:

СН3 СН3 СН3 СН3

Н3С — С+ Х-+Н2С = С ®Н3С ¾ С — СН2 — С+ Х-и т.д
СH3 СН3 СН3 СН3

С помощью некоторых комплексных инициаторов удается получить полимеры, имеющие регулярную структуру (стереорегулярные полимеры). Например, таким комплексным инициатором может быть комплекс тетрахлорида титана и триалкилалюминия AIR3.

Читайте также:  Способы перестать бояться летать

Метод ионной полимеризации используется в производстве поли-изобутилена [-СН2-С(СНз)2-]п, полиформальдегида [-СН2О-]n, полиамидов, например поли-e-капроамида (капрона) [-NH-(CH2)5-CO-]n, синтетических каучуков, например бутадиенового каучука [-СН2-СН=СН-СН2-]n.

Методом полимеризации получают 3/4 всего объема выпускаемых полимеров. Полимеризацию проводят в массе, растворе, эмульсии, суспензии или газовой фазе.

Полимеризация в массе (в блоке) — это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При таком способе полимеризации легче отводить теплоту и регулировать состав и структуру полимеров, однако возникает задача удаления растворителя.

Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностно-активные вещества. Достоинство способа — легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток — необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилакрилата и др.

При суспензионной полимеризации (полимеризации в суспензии) мономер находится в виде капель, диспрегированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от 10-6 до 10-3 м. Недостаток метода — необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов.

При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты — в жидком или твердом состоянии. Метод применятся для получения полипропилена и других полимеров.

Поликонденсация. Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающаяся образованием низкомолекулярных продуктов (Н2О, NH3, HCl, СН2О и др.), называется поликонденсацией. Существенный вклад в изучении процессов поликонденсации внесли российские ученые В.Коршак, Г.Петров и другие, из зарубежных ученых — У.Карозерс, П.Флори, П.Морган и др. Поликонденсация бифункциональных соединений получила название линейной, например:

® NH2-(CH2)5-CO-NH-(CH2)5-CO-NH-(CH2)5-COOH+ H2O и т.д.

Конечным продуктом будет поли-e-капроамид [-CO-NH-(CH2)5-]n. Поликонденсация соединений с тремя или более функциональными группами называется трехмерной. Примером трехмерной поликонденсации служит взаимодействие мочевины и формальдегида:

NH2-CO-NH2 + СН2О ® NH2-CO-NH-CH2OH

NH2-CO-NH-CH2OH + СН2О ® CH2OH-NH-CO-NH-CH2OH

® Н2О + CH2OH-NH-CO-NH-CH2-O-CH2- NH-CO-NH-CH2OH

На первом этапе синтезируется олигомер линейной структуры:

На втором этапе при нагревании в кислой среде происходит дальнейшая поликонденсация олигомера с выделением СН2О и возникновением сетчатой структуры:

— N—СН2—N — СН2 —N — СН2 —N —CH2—N —СН2 —

— N —CH2¾N —CH2 —N —CH2 —N —CH2 —N —СН2 —

Такой полимер невозможно превратит, в исходное состояние, он не обладает термопластичными свойствами и называется термореактивным полимером.

Кроме рассмотренной химической связи между мономерами при поликонденсации возникают химические связи между другими группами мономеров, некоторые из них приведены в табл. 14.1.

Таблица 14.1. Химические связи между функциональными группами некоторых мономеров, возникающих при их поликонденсации

Источник

Основные способы проведения полимеризации

1. Полимеризация в массе (блок)

Мономер — жидкость. Инициатор и агент передачи цепи растворяется в мономере.

Читайте также:  Способы философского познания мира

Преимущества:

  • Минимальное количество компонентов;
  • Отсутствие стадии выделения полимера из реакционной среды;
  • Позволяет получить полимеры с высокой степенью чистоты;
  • Единственный способ получения оптического органического стекла;
  • Минимальное загрязнение окружающей среды.

Недостатки:

  • Сложность отведения тепла при глубокой степени превращения;
  • Тепловые флуктуации приводят к образованию широкого ММР;
  • Локальные флуктуации температуры приводят к деструкции;
  • Локальное испарение мономера и образвание дефектов (раковин).

Применение:

Используют при радикальной полимеризации метилметакрилата и стирола, также полимеризуют винилхлорид для получения поливинилхлоридных смол.

2. Полимеризация в растворе

Мономер, инициатор и агент передачи цепи растворяют в инертном растворителе.

Преимущества:

  • Процесс происходит с одновременным отводом тепла;
  • Возможность варьировать концентрацию мономера в растворе;
  • Возможность варьировать температуру в широких пределах;
  • Возможность получать высоковязкие полимеры;
  • Возможность получения олигомеров с реакционноспособными концевыми группами;
  • Возможность получения лаков — концентрированных растворов полимеров.

Недостатки:

  • Необходимость отделения растворителя и сушки полимера;
  • Необходимость регенерации растворителя;
  • Значительные энергозатраты;
  • Существует конечная вероятность передачи цепи на растовритель, что затрудняет получение очень высокомолекулярных продуктов.

Применение:

Используют при радикальной полимеризации акрилонитрила и катионной полимеризации изобутилена.

3. Суспензионная полимеризация

Мономер диспергируют в воде в виде мелких капель, мономер должен быть водонерастворимым.

Преимущества:

  • Эффективное теплоотведение из реакционной системы;
  • Контроль за длиной кинетических цепей (неширокое молекулярно-массовое распределение);
  • Легкость отделения от воды;
  • Простота переработки готового продукта.

Недостатки:

  • Основная проблема — необходимость сохранения системы в дисперсном состоянии;
  • Необходимость применения стабилизаторов суспензий — ПВС или тонкодисперсные минеральные порошки;
  • Необходимость регенерации растворителя, очистки сточных вод;
  • Необходимость извлечения из полимера остатков стабилизатора.

Применение:

Используют для получения полистирольных гранул (из которых получают пенополистирол), полистирол-дивинил бензольных гранул (для изготовления ионобменных смол) и гранул поливинилацетата (используемых в дальнейшем для превращения в поливиниловый спирт).

4. Эмульсионная (латексная) полимеризация

Мономер диспергируют в водной фазе в виде однородной эмульсии.

Преимущества:

  • Высокая скорость полимеризации;
  • Небольшое изменение вязкости;
  • Легкость регулирования теплопереноса;
  • Использование воды в качестве растворителя;
  • Возможность получать высокомолекулярные соединения с узким значением ММР;
  • Возможность регулировать ММ соотношением мономер / ПАВ / вода;
  • Возможность использовать полученные эмульсии полимеров для производства изделий методом смачивания.

Недостатки:

  • Необходимость использования дополнительных веществ (ПАВ, эмульгаторы);
  • Очистка большого количества сточных вод;
  • Для выделения полимера из эмульсии необходим каогулянт;

Применение:

Проводят полимеризацию винилхлорида, бутадиена, хлоропрена, винилацетата, акрилатов и метакрилатов.

5. Полимеризация в газовой фазе:

Используется, если мономер характеризуется низкой критической температурой кипения.

Преимущества:

  • Нет необходимости применять растворители;
  • Возможно эффективно применять фото- и радиоинициирование;

Недостатки:

    Необходимость применения высокого давления (

10 8 Па);

  • Очень плохой отвод тепла;
  • Изменение кинетики полимеризации при появлении твердой фазы;
  • Свойства конечных продуктов, таких, как средине молекулярные массы, молекулярно-массовое распределение, молекулярная структура и химическая однородность, значительно зависят от следующих факторов:

    • Эффективность теплоотвода при полимеризации;
    • Одинакового времени пребывания реагентов в зоне реакции;
    • Эффективности перемешивания, обеспечивающего однородный температурный профиль и равномерное распределение реагентов в реакционной среде;

    Применение:

    Проводят полимеризацию этилена, тетрафторэтилена, п-ксилола и др.

    6. Полимеризация в твердой фазе

    Полимеризация мономеров, находящихся в кристаллическом или стеклообразном состоянии. Получают полимеры в стереорегулярном виде, а также из полисопряженных молекул получаются высококристаллические электропроводящие полимеры (последний пример).

    Читайте также:  Способ возбуждения тяговых электродвигателей

    Источник

    Основные методы получения полимеров

    Полимеризация и поликонденсация

    Синтетические полимеры получают в результате реакций полимеризации и поликонденсации. Получение полимеров реакцией полимеризации и поликонденсации — основные пути синтеза ВМС на сегодняшний день.

    Полимеризация — это процесс соединения друг с другом большого числа молекул мономера за счет кратных связей (С = С, С = О и др.) или раскрытия циклов, содержащих гетероатомы (О, N, S). При полимеризации обычно не происходит образования низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав.

    Поликонденсация — зто процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и да более функциональные группы (ОН, СО, СОС, NHS и др.) способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам.

    Полимеризация мономеров с кратными связями протекает по законам цепных реакций в результате разрыва непредельных связей. Макромолекула при цепной полимеризации образуется очень быстро и сразу же приобретает конечные размеры, т. е не возрастает при увеличении длительности процесса.

    Полимеризация мономеров циклического строения происходит за счет раскрытия цикла и в ряде случаев пропекает не по цепному, а по ступенчатому механизму.

    Макромолекула при ступенчатой полимеризации образуется постепенно, т. е. сначала образуется димер затем тример и т.д., поэтому молекулярная масса полимера растет со временем.

    Принципиальное отличие ценной полимеризации от ступенчатой и от поликонденсации состоит в том, что на разных стадиях процесса реакционная смесь всегда состоит из мономера и полимера и не содержит ди-, три-, тетрамеров. С увеличением продолжительности реакции растет лишь число макромолекул полимера, а мономер расходуется постепенно. Молекулярная масса полимера не зависит от степени завершенности реакции или, что то же, от конверсии мономера, которая определяет только выход полимера.

    Реакции в цепях полимеров

    Многие полимеры нельзя получить ни полимеризацией, ни поликонденсацией, поскольку или неизвестны исходные мономеры, или мономеры не образуют высокомолекулярных соединений при получении полимеров реакцией полимеризации и поликонденсации. Синтез таких полимеров осуществляют, исходя из высокомолекулярных соединений, макромолекулы которых содержат реакционноспособные функциональные группы. По этим группам полимеры вступают и те же реакции, что и содержащие такие группы низкомолекулярные соединения.

    Реакции в цепях полимера могут происходить без существенного изменения молекулярной массы полимера (таи называемые полимер-аналогичные превращения), с увеличением молекулярной массы полимера (синтез привитых и блок сополимеров) или с уменьшением молекулярной массы (деструкция макромолекул).

    1. Энциклопедия полимеров.. М., Советская энциклопедия. Т. 1, 1972, Т. 2, 1974, т. 3, 1977.
    2. Бранцхин E. А., Шульгина Э. С., Технология пластических масс. М., Химия, 1974

    Объявления о покупке и продаже оборудования можно посмотреть на

    Обсудить достоинства марок полимеров и их свойства можно на

    Зарегистрировать свою компанию в Каталоге предприятий

    Источник

    Оцените статью
    Разные способы