- Мир науки
- Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!
- Физика — рефераты, конспекты, шпаргалки, лекции, семинары
- Способы получения р-n-переходов
- 1.3 Методы создания p-n-переходов
- 1.3.1 Точечные переходы
- 1.3.2 Сплавные переходы
- 1.3.3 Диффузионные переходы
- 1.3.4 Эпитаксиальные переходы
- Методы создания p-n-переходов
- Методы изготовления P-N-перехода. какие бывают Методы изготовления P-N-перехода, и кратко о них расскажите, пожалуйста
- Что такое p-n переход
- Атомы и ковалентная связь
- Полупроводники и кристаллическая решетка
- Проводимость кристаллической решетки с примесями
- Донорская примесь и n-тип
- Акцепторная примесь и p-тип
- Ток неосновных зарядов
- Создание p-n перехода
- Преодоление потенциального барьера
- Обратное включение
- Применение p-n перехода
- Контролируемый лавинообразный пробой
- Электрический пробой
- Тепловой пробой
- Как избавиться от обратного тока
- Как еще применяется обратное включение
Мир науки
Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!
Физика — рефераты, конспекты, шпаргалки, лекции, семинары
Способы получения р-n-переходов
Сплавные pn-переходы получают путем расплавления на поверхности n-германия индия (In), трехвалентного
элемента, который является в германии акцепторной примесью. При нагревании до 550оС в нейтральной атмосфере водорода или аргона индий плавится и растворяет часть германия. После охлаждения образуется ре кристаллический слой р-Ge (рис.7.12). Это монокристалле германия, который является продолжением кристаллической решетки пластинки германия, но легированный акцепторной примесью индия.
Диффузионные pn-переходы формируются путем перекомпенсации (изменения типа проводимости полупроводника) n-кремния в р-кремний за счет диффузии при температуре 1200оС в поверхностный слой акцепторной примеси бора (В), например, из паров борной кислоты Н3ВО3.
Создавая на поверхности пластины защитную маску из двуокиси кремния SiO2, формируют pn-переходы в определенных местах. (Рис.7.13). Это планарная технология изготовления интегральных микросхем. Глубина залегания перехода зависит от температуры и времени диффузионного процесса.
Эпитаксиальные pn-переходы образуются в процессе эпитаксиального наращивания на полупроводниковую подложку слоя полупроводника, например, кремния из газовой фазы моносилану (SiH4) на по-верхнюю кремния. Эпитаксиальных процесс — выращивание слоя полупроводника из газовой фазы, в результате чего образуется монокристаллическая пленка, которая является продолжением кристаллической решетки подложки.
Добавляя в камеру элементы донорной или акцепторной примеси, можно формировать баготошарову структуру р-и n-областей (сэндвич). Метод ионной имплантации — легирование полупроводника путем бомбардировки ускоренными ионами соответствующей примеси (ионным пучком).
Источник
1.3 Методы создания p-n-переходов
Электронно-дырочные переходы в зависимости от технологии изготовления разделяются на точечные, сплавные, диффузионные, эпитаксиальные, планарные и другие.
1.3.1 Точечные переходы
Образуются точечно-контактным способом (рис. 1.4.). К полированной и протравленной пластине монокристаллического полупроводника n-типа подводят иглу, например из бериллиевой бронзы с острием 20-30 мкм. Затем через контакт пропускают кратковременные мощные импульсы тока. Место контакта разогревается до температуры плавления материала зонда, и медь легко диффундирует внутрь полупроводника образуя под зондом небольшую по объему областьp-типа. Иногда перед электрической формовкой на конец иглы наносят акцепторную примесь (Inили А1), при этом прямая проводимость контакта доходит, до 0,1 см. Таким образом, электронно-дырочный переход образуется в результате диффузии акцепторной примеси из расплава зонда и возникновения под ним областиp-типа в кристаллической решетке полупроводникаn-типа. Точечные переходы применяют при изготовлении высококачественных диодов для радиотехнического оборудования.
1.3.2 Сплавные переходы
Обычно получают выплавлением примеси в монокристалл полупроводника (рис. 1.5.). Монокристалл, например германияn-типа распиливают на пластины толщиной 200-400 мкм и затем после травления и полировки разрезают на кристаллы площадью в два-три миллиметра и больше. На кристаллы, помещенные в графитовые кассеты, накладывают таблетку акцепторного материала, чаще всего индия. Затем кассета помещается в вакуумную печь, в которой таблетка индия и слой германия под ней расплавляются. Нагрев прекращается и при охлаждении германий кристаллизуется, образуя под слоем индия слой p-типа. Застывшая часть индия представляет собой омический (невыпрямляющий) контакт, на нижнюю часть пластины наносят слой олова, который служит омическим контактом к германиюn-типа. К индию и олову припаивают выводы обычно из никелевой проволочки.
Иногда, для образования омического контакта с областью n-типа, на неё напыляют сплавAu-Sb, содержащий примерно 0.17% сурьмы, и вплавляют его при температуре 40°С.
1.3.3 Диффузионные переходы
Диффузионные переходы получают диффузией примесного вещества в исходную полупроводниковую пластинку (рис. 1.6.). Это один из наиболее широко используемых методов получения p-n-перехода, он имеет несколько разновидностей.
При планарном методе диффузии переходы получают, используя изолирующий слой, препятствующий диффузии примесей. На поверхности кремния n-типа выращивается тонкий (около 3 мкм) слой двуокиси кремния SiO2(рис. 1.6.). Фотолитографическим методом в определенных местах окисла получают «окна», через которые диффундирующие примеси проникают вn-слой, образуя переход.
Методы диффузии обеспечивают получение плавных p-nпереходов и используются при изготовлении интегральных микросхем.
1.3.4 Эпитаксиальные переходы
Эпитаксиальные переходы образуются ориентированным направлением слоя монокристаллического полупроводника на исходном монокристалле-подложке (рис. 1.7.).
1 – p-n-переход; 2 – p-область; 3 – слой высокоомного полупроводника; 4 – подложка.
Рисунок 1.8 — Эпитаксиальный переход, образованный по планарно-эпитаксиальному методу.
Для проведения эпитаксии необходимо создавать условия для конденсации атомов осаждаемого вещества на поверхности подложки. Конденсация происходит перенасыщением пара или жидкого раствора, а также при испарении осаждаемого вещества в вакууме в специальных реакторах. При наращивании плёнки с проводимостью противоположной подложке, образуется p-n-переход.
При изготовлении интегральных схем широко используют планарно-эпитаксиальный метод. Особенность такого технологического процесса заключается в том, что путём наращивания на подложку 4 из низкоомного кремния наносят тонкий слой 3 высокоомного полупроводника, повторяющего структуру подложки. Этот слой, называемый эпитаксиальным, покрывают плотной защитной пленкой SiO2 толщиной 1 мкм (рис. 1.8.). В плёнке протравливают «окно», через которое путем диффузии бора или алюминия создается p-n-переход, выход которого на поверхность оказывается сразу же надежно защищенным пленкой окисла.
Следует отметить, что в последние годы широкое распространение получили такие методы формирования p-n-переходов, как ионное легирование и молекулярно-лучевая эпитаксия.
Источник
Методы создания p-n-переходов
Электронно-дырочные переходы в зависимости от технологии изготовления разделяются на точечные, сплавные, диффузионные, эпитаксиальные, планарные и другие.
Точечные переходы
Образуются точечно-контактным способом (рис. 1.4.).
К полированной и протравленной пластине монокристаллического полупроводника n-типа подводят иглу, например из бериллиевой бронзы с острием 20-30 мкм. Затем через контакт пропускают кратковременные мощные импульсы тока. Место контакта разогревается до температуры плавления материала зонда, и медь легко диффундирует внутрь полупроводника образуя под зондом небольшую по объему область p-типа. Иногда перед электрической формовкой на конец иглы наносят акцепторную примесь (In или А1), при этом прямая проводимость контакта доходит, до 0,1 см. Таким образом, электронно-дырочный переход образуется в результате диффузии акцепторной примеси из расплава зонда и возникновения под ним области p-типа в кристаллической решетке полупроводника n-типа. Точечные переходы применяют при изготовлении высококачественных диодов для радиотехнического оборудования.
Сплавные переходы
Обычно получают выплавлением примеси в монокристалл полупроводника (рис. 1.5.).
Монокристалл, например германия n-типа распиливают на пластины толщиной 200-400 мкм и затем после травления и полировки разрезают на кристаллы площадью в два-три миллиметра и больше. На кристаллы, помещенные в графитовые кассеты, накладывают таблетку акцепторного материала, чаще всего индия. Затем кассета помещается в вакуумную печь, в которой таблетка индия и слой германия под ней расплавляются. Нагрев прекращается и при охлаждении германий кристаллизуется, образуя под слоем индия слой p-типа. Застывшая часть индия представляет собой омический (невыпрямляющий) контакт, на нижнюю часть пластины наносят слой олова, который служит омическим контактом к германию n-типа. К индию и олову припаивают выводы обычно из никелевой проволочки.
Иногда, для образования омического контакта с областью n-типа, на неё напыляют сплав Au-Sb, содержащий примерно 0.17% сурьмы, и вплавляют его при температуре 40°С.
Диффузионные переходы
Диффузионные переходы получают диффузией примесного вещества в исходную полупроводниковую пластинку (рис. 1.6.). Это один из наиболее широко используемых методов получения p-n-перехода, он имеет несколько разновидностей.
При планарном методе диффузии переходы получают, используя изолирующий слой, препятствующий диффузии примесей. На поверхности кремния n-типа выращивается тонкий (около 3 мкм) слой двуокиси кремния SiO2 (рис. 1.6.). Фотолитографическим методом в определенных местах окисла получают «окна», через которые диффундирующие примеси проникают в n-слой, образуя переход.
Методы диффузии обеспечивают получение плавных p-n переходов и используются при изготовлении интегральных микросхем.
Эпитаксиальные переходы
Эпитаксиальные переходы образуются ориентированным направлением слоя монокристаллического полупроводника на исходном монокристалле-подложке (рис. 1.7.).
1 – p-n-переход; 2 –p-область; 3 – слой высокоомного полупроводника; 4 – подложка.
Рисунок 1.8 — Эпитаксиальный переход, образованный по планарно-эпитаксиальному методу.
Для проведения эпитаксии необходимо создавать условия для конденсации атомов осаждаемого вещества на поверхности подложки. Конденсация происходит перенасыщением пара или жидкого раствора, а также при испарении осаждаемого вещества в вакууме в специальных реакторах. При наращивании плёнки с проводимостью противоположной подложке, образуется p-n-переход.
При изготовлении интегральных схем широко используют планарно-эпитаксиальный метод. Особенность такого технологического процесса заключается в том, что путём наращивания на подложку 4 из низкоомного кремния наносят тонкий слой 3 высокоомного полупроводника, повторяющего структуру подложки. Этот слой, называемый эпитаксиальным, покрывают плотной защитной пленкой SiO2толщиной 1 мкм (рис. 1.8.). В плёнке протравливают «окно», через которое путем диффузии бора или алюминия создается p-n-переход, выход которого на поверхность оказывается сразу же надежно защищенным пленкой окисла.
Следует отметить, что в последние годы широкое распространение получили такие методы формирования p-n-переходов, как ионное легирование и молекулярно-лучевая эпитаксия.
Источник
Методы изготовления P-N-перехода. какие бывают Методы изготовления P-N-перехода, и кратко о них расскажите, пожалуйста
Переходы бывают сплавные, эпитаксиальные, диффузионные созданные ионной имплантацией.
Сплавные — к кристаллу поулпроводника приплавляется навеска из легирующего материала. Вот так делались германиевые транзисторы на заре транзисторной тэры.
Эпитаксиальнеые переходы — когда на поверхности пластины выращивается слой полупроводника, легирующая примесь в котором противоположная (по знаку) основной легирующей примеси пластины. Такие пластины и по сей день применяются для производства аналоговых схем. Да и многих цифровых тоже. Обратите внимание, что переход тут выращивается по всей пластине целиком. Если нужно из этого сделать какой-то отдельный транзистор или диод, то такую пластину потом можно селективно стравить — так делаются транзисторы с меза-структурой (КТ315 как раз такой) . Берётся пластина n-типа, на ней выращивается тонкий слой р-типа (база) и сверху опять слой n-типа (коллектор) , потом травлением создаются отдельные островочки. Всё, остаётся нарезать на квадратики.
Диффузия и ионная имплантация позволяют формировать локальные pn-переходы. Это основа всей планарной технологии. Для диффузионного создания переходов на пластине выращивается (или на неё наносится) маскирующий окисел, в этом окисле травятся окна до поверхности полупроводника, и при достаточно высокой температуре проводится диффузия легирующей примеси.
Ионная имплантация отличается от диффузии тем, что легирующая примесь загоняется в полупроводник не за счёт температуры, а тупо разгоном ионов этой примеси до высокой энергии (напряжением в несколько десятков, иногда сотен киловольт) . Ну и опять же примесь эта попадает в полупроводник только там, где для неё оставлены окна в маске. Преимущества ионной имплантации в том, что это низкотемпературный процесс, поэтому маска может быть даже из фоторезиста (не обязательно из окисла) , и намного выше точность контроля дозы примеси, которую мы загоняем в полупроводник. Второе важное преимущество — шире выбор легирующих примесей. Скажем, у мышьяка очень низкий коэффициент диффузии, поэтому диффузионного pn-перехода на нём не получить, за разумное время. А имплантацией — пожалста. Недостаток имплантации — дороговизна и сложность установок по сравнению с диффузионной печью.
Источник
Что такое p-n переход
Атомы и ковалентная связь
Для начала давайте разберемся на уровне атомов что и как работает. Это будет небольшое предисловие.
Вся материя состоит из молекул, а молекулы в свою очередь из атомов. И у каждого атома есть протоны, нейтроны и электроны.
Протоны образуют с нейтронами ядро, в котором их равное количество.
Исключение — это водород у которого есть только один протон в ядре, без нейтрона.
Вокруг ядра находятся орбиты электронов (кстати, сейчас принято считать, что это облако электронов). Между ними действуют сильные и слабые силы, которые являются основой атомов. Далее на изображениях не будем указывать протоны и нейтроны для простоты восприятия.
Конечно, можно погрузиться и дальше, что есть мезоны, кварки и другие фундаментальные частицы. А еще, что на электронных оболочках атомов электроны распределены в виде «газа» и их не получится точно обнаружить, только с определенной долей вероятности. Однако, это не обязательно знать для понимания принципов работы общей цифровой электроники.
Достаточно просто принять тот факт, что есть атомы, у которых присутствуют ядра с положительным зарядом, а вокруг этого ядра находятся орбиты с электронами.
Электроны и протоны имеют противоположные знаки.
В электрически нейтральном атоме количество электронов и протонов одинаково. Все электроны распределены по разным уровням. Кто ближе к ядру – по два электрона, следующий уровень по 4 электрона и так далее. Но если по какой-либо причине атом теряет электрон, то такой атом становится положительным ионом.
Ему не хватает электрона на своей внешней электронной орбите, которая называется валентным уровнем. С валентного уровня у атома проще «забрать» электрон. А такие электроны, которые находятся на валентном уровне, называются валентными электронами.
Положительный ион (атом, у которого не хватает электронов) будет со знаком +, так как у него дефицит электронов, и он будет притягивать или притягиваться к свободному электрону (зависит от среды).
Все атомы в молекулах соединены друг с другом на валентном уровне, то есть при помощи ковалентной связи.
На валентном уровне связь ядра с электронами намного меньше, чем на других, поэтому атомы могут образовывать материю, соединяясь с другими атомами. Так и получаются химические реакции и соединения атомов друг с другом.
Полупроводники и кристаллическая решетка
Теперь плавно переходим к полупроводникам. У полупроводников, таких как кремний (Si) и германий (Ge) на ковалентном уровне есть по 4 электрона.
Не путайте кремень и кремний. Кремень – это минерал, а кремний – это химический элемент, который был открыт в 1810 году.
Особенность полупроводников заключается в том, что их атомы друг с другом образуют парные связи.
Допустим, есть атом кремния. У него 4 электрона на валентном уровне. Если к нему присоединить еще 4 атома кремния, то получится кристаллическая решетка. 4 атома связаны друг с другом 4 своими электронами.
На картинке показана связь атомов в плоскости. В реальности она естественно, находится не в одной плоскости, а в пространстве.
То есть, каждый атом может образовывать устойчивую связь друг с другом, по 4 штуки с каждой стороны и плоскости.
Особенность полупроводников заключается в том, что эта кристаллическая решётка очень устойчива.
Кстати, проводимость полупроводников сильно зависит от внешних условий (давление, температура, радиация, свет). Намного сильнее, чем у других материалов. Это все связано с особенностью кристаллической решетки, которая позволят делать солнечные батареи, датчики, камеры и много чего еще.
Итак, атомы полупроводников без примесей электрически нейтральны.
И что самое главное, они все равно будут связаны друг с другом. Общая ковалентная связь позволят им обмениваться друг с другом электронами.
Проводимость полупроводников в нормальных условиях практически такая же, как у диэлектриков, то есть очень низкая.
Проводимость кристаллической решетки с примесями
Свободных электронов в чистом полупроводнике мало, и это объясняет низкую проводимость материала.
Однако, при повышении температуры электроны на валентном уровне получают большую энергию, и могут быстрее покидать свои орбиты. Поэтому материал становится более проводимым при повышении температуры.
И из-за этого полупроводники получили свое название. Это и проводник, и диэлектрик в одном флаконе, который меняет свою проводимость из-за внешних условий.
Донорская примесь и n-тип
Если добавить в кристаллическую решетку кремния атом, у которого 5 валентных электронов, то из-за него в кристалле появятся свободные электроны.
Например, есть атом мышьяка (As) и атомы кремния (Si).
4 валентных электрона мышьяка образуют валентную связь с другими атомами кремния. А вот один электрон будет находится в зоне проводимости. То есть, он станет свободным электроном.
А вот атом мышьяка, который непреднамеренно отдал свой электрон, станет положительным ионом. И несмотря на это, кристаллическая решетка остается стабильной.
Полупроводник с примесью, в котором находятся свободные электроны, называется полупроводником n-типа. Основные носители заряда – свободные электроны. Неосновные – дырки.
Примеси добавляют при помощи легирования. Оно может быть, как металлургическим (повышением температуры, изготовление сплавов), так химическим (ионное и диффузное).
Если подать ток по такому материалу, то свободные электроны из примеси притягиваются положительным потенциалом. А с отрицательного потенциала приходят «новые» электроны, взамен старым, которые ушли к положительному потенциалу.
Акцепторная примесь и p-тип
А что будет, если в полупроводник добавить атом с тремя валентными электронам, например бор (B)?
Тогда три валентных электрона атома бора создадут связь с другими атомами кремния. Однако теперь в кристалле с такой примесью будет не хватать одного электрона.
Это отсутствие электрона называется дыркой. По сути, это положительный потенциал, но для простоты понимания его принято называть дыркой.
Это не ион и не элементарная частица. Это дефицит электрона у атомов. И тот атом, у которого будет не хватать электрона на своей орбите, будет притягивать к себе и свободные электроны, которые оказались в кристалле, и электроны от соседних атомов.
Такая примесь в кристалле также повышает его проводимость. И эта примесь называется акцепторной. То есть, примесные атомы создают дефицит электронов в кристаллической решетке.
Поэтому, такой полупроводник с акцепторной примесью называются p-типом. Его основные носители заряда – дырки. А неосновные – электроны.
Если пустить ток по такому материалу, то к отрицательному потенциалу будет притягиваться дырка к новому поступающему электрону из источника тока. А вот к положительному потенциалу будут уходить электроны, которые находились в кристалле.
Кстати, примесный атом бора получается отрицательно заряженным ионом, поскольку при прохождении тока на его орбите будет не 3 электрона, а 4, что является для него избытком.
Ток неосновных зарядов
Как уже было сказано выше, у p-типа основные носители заряда — это дырки, а у n-типа — это электроны. Неосновные носители соответственно, наоборот. И неосновные носители зарядов тоже участвуют при прохождении тока.
Конечно, неосновных носителей зарядов намного меньше, чем основных, но не стоит их полностью игнорировать, особенно когда речь идет о p-n переходе.
Создание p-n перехода
Что будет, если соединить два кусочка кремния c примесями p-типа и n-типа вместе? Получится p-n переход. Или как его еще называют — электронно-дырочный переход.
Этот переход является разграничительной зоной между p-областью и n-областью.
И особенностью этого перехода является то, что этот переход состоит из ионизированных примесных атомов, которые не позволяют свободным зарядам из двух разных областей соединяться друг с другом. Он образовался от такого явления, как диффузионный ток.
Этот ток возникает при нагреве (изготовлении перехода). Носители зарядов рекомбинируют друг с другом и уравновешивают баланс. Диффузионный ток под воздействием тепла хаотичный, и не имеет упорядоченного направления, если на него не действует вешнее напряжение.
Например, электроны из n-области начинают накапливаться возле положительных ионов примеси, но так как с другой стороны находятся отрицательные ионы n-области, они не могут перейти этот барьер. С дырками ситуация аналогична.
Свободные электроны из n-области не могут перейти в p-область из-за барьера, который создан ионизированными донорскими примесями. Здесь создается электрическое поле, которое действует как барьер для дырок и электронов. И из-за этого в p-n переходе отсутствуют свободные носителя зарядов. Переход их попросту отталкивает от себя с двух сторон.
Кстати, еще одно название барьера – обедненная область.
А в целом, кристалл остается электрически нейтральным. Если бы не было этого барьера, свободные носители заряды уравновесили бы друг друга.
Преодоление потенциального барьера
Чтобы свободные электроны и дырки могли пройти через этот барьер, нужно приложить внешнее напряжение, которое будет превышать напряжение, требуемое для перехода барьера.
Подключим к n-области минус источника тока, а к p-области плюс источника тока. Такое включение называется прямым. Еще n-область в приборах называют катодом, а p-область — анодом.
Напряжение источника должно быть выше, чем то, которое требуется для открытия p-n перехода.
Допустим, потенциальный барьер равен 0,125 Вольт. Чтобы преодолеть его, подключим источник с напряжением 5 В.
Чтобы не перегружать восприятие, на схеме не показаны неосновные носители зарядов.
И благодаря воздействию электрического поля внешнего источника, свободным носителям хватает энергии для того, чтобы перейти этот потенциальный барьер и преодолеть его электрическое поле. Переход подключен с прямым смещением.
Свежий электрон идет с источника, переходит в n-область, далее преодолевает барьер и переходит дырке, где происходит рекомбинация. И далее этот электрон идет на встречу к дырке, которая идет с положительного потенциала, подключенного к p-области. То есть, по p-n переходу проходит электрический ток. Этот ток называют еще диффузионным током или током прямого включения – когда основные носители зарядов упорядочено движутся к внешнему источнику тока.
Аналогична ситуация с дырками. Положительный потенциал внешнего источника, который подключён к p-области, будет забирать электрон, а на его месте появится дырка. Дырка в свою очередь будет двигаться к барьеру и далее к отрицательному потенциалу источника.
Ток, который создается дырками называется дырочным. Соответственно, ток, который создается электронами – электронным.
А на этой схеме переход показан без барьера, но с обратным током.
Неосновные носители зарядов в свою очередь действуют наоборот, от чего и возникает дополнительное сопротивление в p-n переходе.
Обратный ток может быть равен всего нескольким микроамперам.
Обратное включение
Поменяем полярность внешнего источника на противоположную. Минус к p-области, а плюс к n-области. Что же будет происходить с барьером и током зарядов?
Барьер увеличится за счет того, что основные носители зарядов будут притягиваться к внешнему источнику. Увеличится сопротивление потенциального барьера и напряжение его открытия.
Однако, не смотря на все это, через p-n переход будет протекать обратный ток.
Этот обратный ток очень мал, поскольку создается неосновными носителями заряда. Он еще называется дрейфовым током.
Применение p-n перехода
Вот так и работает простой диод, который состоит из p-n перехода. По-простому, p-n переход – это и есть классический диод. И он может работать как при прямом включении, так и при обратном. А вообще, вся современная цифровая техника состоит из p-n переходов.
Транзисторы, тиристоры, микросхемы, логические элементы, процессоры и многое другое основано именно на этом.
Контролируемый лавинообразный пробой
А что будет, если превысить напряжение потенциального барьера? Например, оно равно 7 В. А на схеме источник 5 В. Если подключим источник на 8 В, то наступит лавинообразный ток.
Неосновные носители зарядов будут забирать с собой основные. От части этот процесс контролируем, если не превышать напряжение источника выше, чем может выдержать p-n переход.
Электрический пробой
Если еще больше повысим напряжение, то будет электрический пробой. Эти явления широко используются на практике, например, в качестве стабилизаторов.
Ток не пойдет по цепи пока не будет то напряжение, которое требуется для открытие обратного смещенного p-n перехода.
И электрический пробой контролируется. Стабилитроны (так называются диоды, которые работают в таком режиме) делаются специально с широкими p-n переходами, которые долго работают под постоянными нагрузками.
Тепловой пробой
Но если радиодеталь изначально не рассчитана электрический пробой, то она быстро нагреется и произойдет тепловой пробой. Дырки и электроны получат тепловую энергию, из-за которой барьер полностью разрушится. Переход нагревается и трескается под действием температуры. Это необратимый процесс.
Вообще, когда техника «перегорает» — это и есть явление теплового пробоя, то есть превышение допустимой температуры.
И во время пайки тоже может случиться тепловой пробой. Достаточно немного перегреть деталь и p-n переход будет разрушен.
Соответственно, если пустить по диоду ток, который превышает его пропускную способность, то тоже случится тепловой пробой. Тоже самое касается и рассеиваемой мощности.
Как избавиться от обратного тока
А можно ли избавиться от обратного тока? Для этого в переход добавляют металлические примеси, которые убирают неосновные носители зарядов при обратном включении.
Но и обратный ток можно использовать на практике.
Например, с его помощью реализуются обратная связь, некоторые функции и измерения.
Как еще применяется обратное включение
А еще, обратное включение очень похоже на конденсатор. Взгляните на схему. Это же две обкладки конденсатора, посередине которого есть «диэлектрик». И электронно-дырочный переход обладает емкостью. И это тоже используется на практике. Так называется полупроводниковый конденсатор.
В радиоприёмниках используют вместо подстрочных конденсаторов варикапы. Варикапы легко настроить. Нужно всего лишь подать напряжение обратным смещением определенного значения, для повышения или понижения емкости.
Конечно, это не основное применение p-n перехода. Переход используется во всей цифровой технике по-разному.
Выпрямители, усилители, генераторы, процессоры, солнечные батареи и много другое. И то, что было описано выше про принцип работы p-n перехода – это принцип работы обычного диода.
Это наиболее простое описание принципа работы p-n перехода. Он бывает разных типов, и в полупроводниках есть физические явления, которые возникают при различных условиях.
Да и изготовление полупроводниковых радиодеталей бывает разным. Полупроводники разделяются на целые классы со своими особенностями. А микропроцессорное производство – это отдельный вид искусства.
Источник