Способы получения медицинского изображения

Медицинское изображение, определение, понятие, источники изображения.

Матричные изображения, определение, основные характеристики матрицы, области использования.

Матричные изображения имеют в своей основе растр, состоящий из большого числа ячеек — пикселов. Пространственное разрешение матричных изображений тесно связано с количеством содержащихся в них пикселов. Матричные изображения формируются на растровом дисплее аналогично тому, как это происходит на экране телевизора, т.е. путем сканирования электронным лучом по строкам. Тем самым создается режим восприятия изображения в реальном времени. Для создания матричного изображения применяют специальный дисплейный процессор, который через систему связи (интерфейс) подключен к оперативной памяти компьютера. Каждому из элементов матрицы изображения на экране дисплея соответствует определенный участок адресуемой памяти. Таким образом, вся ПЛОЩАДЬ растрового дисплея содержит совокупность пикселов, имеющую свою размерность. В лучевой диагностике экранная площадь дисплея обычно формируется в виде следующих матриц: 64×64, 128×128, 256×256, 512×512, 1024×1024 пикселов. Чем больше число пикселов, на которое разбивается экранная площадь дисплея, тем выше разрешающая способность системы отображения. Чем крупнее матрица изображения, тем более фрагментарным оно представляется наблюдателю. Каждый пиксел изображения формируется в памяти дисплейного процессора различным числом бит — от 1 до 24. Чем большим количеством бит информации представлен каждый пиксел изображения, тем богаче изображение по своим зрительным свойствам и тем больше информации об исследуемом объекте оно содержит. Так, 2-битный пиксел содержит всего 2 г =4 уровня передачи изображения, 8-битный (однобайтный) — 256, 24 битный пиксел имеет свыше 16 млн вариантов. Количество бит, содержащихся в одном пикселе, называют его глубиной. Чем больше глубина пиксела, тем качественнее изображение. Оптимальным вариантом черно-белого изображения является однобайтный пиксел, который содержит 256 градаций серого цвета (от белого — 0 до черного — 256),— так называемая стандартная серая шкала. При изображении в цвете наилучшим вариантом является трехбайтный пиксел, который содержит 16,7 млн цветов (стандарт RGB — Red, Green. Blue — красный, зеленый, голубой). Однако такая палитра цветов требует большого объема памяти компьютера, поэтому в медицинской практике чаще применяют упрощенный, так называемый индексированный, цвет — однобайтный, который содержит 256 цветов. Он несколько хуже по качеству, зато намного рациональнее расходует память компьютера. Кроме того, он быстрее и проще передается по линиям компьютерной связи. И все же для ускорения передачи изображений и более рационального хранения в компьютерной памяти их сжимают (т.е. производят их компрессию) специальными программами в несколько раз, или архивируют. При обратном процессе — разархивировании — качество изображения восстанавливается практически до исходного. Для передачи изображений от компьютера к компьютеру их рекомендуется переводить в один из стандартных форматов, наиболее универсальным из которых является TIFF (Target-Image File Format — целевой файловый формат изображения).

В ультразвуковой диагностике — 6-битный пиксел

В радионуклидной диагностике — 8-битный пиксел

В компьютерной томографии — 2-байтные пикселы

В дигитальной рентгенографии и рентгеноскопии — 1024×1024 пикселов

В дигитальной субтракционной ангиографии — свыше 2 Мбайт

Радионуклидные методы исследования печени и желчевыделительной системы.

Рентгенологический метод

Рентгенограммы — основной способ изучения лучевой морфологии костей в норме и при патологии.

Для исследования ранних изменений в замыкающих пластинках эпифизов и субхондральном слое кости выполняют снимки с прямым увеличением рентгеновского изображения. При исследовании сложно устроенных отделов скелета (череп, позвоночник, крупные суставы) большую пользу приносит обычная (линейная) томография.

На рентгенограммах трубчатых костей различаются диафизы, метафизы, эпифизы и апофизы. Диафиз — это тело кости. В нем на всем протяжении выделяется костномозговой канал. Он окружен компактным костным веществом, которое обусловливает интенсивную однородную тень по краям кости — ее кортикальный слой, который постепенно истончается по направлению к метафизам. Наружный контур кортикального слоя резкий и четкий, в местах прикрепления связок и сухожилий мышц он неровный. Апофиз — это выступ кости вблизи эпифиза, имеющий самостоятельное ядро окостенения; он служит местом начала или прикрепления мышц. Суставной хрящ на рентгенограммах не дает тени. Вследствие этого между эпифизами, т.е. между суставной головкой одной кости и суставной впадиной другой кости, определяется светлая полоса, называемая рентгеновской суставной щелью. Рентгеновское изображение плоских костей существенно отличается от картины длинных и коротких трубчатых костей. В своде черепа хорошо дифференцируется губчатое вещество (диплоический слой), окаймленное тонкими и плотными наружной и внутренней пластинками. В костях таза выделяется структура губчатого вещества, покрытого по краям довольно выраженным кортикальным слоем. Смешанные кости в рентгеновском изображении имеют различную форму, которую можно правильно оценить, производя снимки в разных проекциях.

Читайте также:  Способы выявления творческих способностей детей

медицинское изображение, определение, понятие, источники изображения.

Медицинское изображение – относительно новое понятие в медицинской диагностике. Это – собирательный термин, включающий в себя совокупность методических, методологических, понятийных и технологических вопросов. Медицинское изображение (Medical Imaging) – это структурно-функциональный образ органов человека, предназначенный для диагностики заболеваний и изучения анатомо- физиологической картины организма. Иногда его называют также диагностическим изображением (Diagnostic Imaging).

Основными источниками для получения медицинских изображений являются методы лучевой диагностики – рентгенологический, магнитно-резонансный, радионуклидный и ультразвуковой. К этим изображениям можно отнести также оптические изображения, основанные на биолюминесценции и флюоресценции. Новым направлением в медицинской визуализации является оптическая когерентная томография, которая начинает широко применяться в офтальмологии.

В широком понимании термин медицинское изображение включает в себя, помимо лучевых образов, также картины органов, получаемые другими физическими способами исследования: эндоскопическими, оптическими, микроскопическими,

инфракрасными и пр.

2. Аналоговые и цифровые медицинские изображения, определение и характеристика.

К аналоговым относятся такие изображения, в которых заключена информация непрерывного характера. Подобные изображения являются основными при восприятии человеком окружающего его мира. Всем аналоговым изображениям, включая медицинские, свойствен ряд недостатков. В частности, затруднено их компактное хранение, обработка в соответствии с потребностями диагностики, передача от пользователя к пользователю. В аналоговых изображениях всегда присутствует много лишних сигналов, или шумов, которые ухудшают их качество. Этих недостатков лишены цифровые медицинские изображения. Они имеют в своей основе ячеистую структуру (матрицу), которая содержит информацию об органе в виде набора цифр, полученных из датчиков диагностического аппарата. С помощью компьютера из сигналов, хранящихся в магнитной памяти, по сложным алгоритмам создается (реконструируется) изображение органов. Цифровые изображения характеризуются высоким качеством, отсутствием посторонних сигналов (шумов). Их легко сохранять в компактном виде на различных магнитных и оптических носителях, обрабатывать на компьютере и пересылать на большие расстояния по сетям телекоммуникаций. Необходимо подчеркнуть, что на современном этапе развития медицинской визуализации цифровые изображения становятся доминирующими в медицинской диагностике.

Аналоговые медицинские изображения могут быть преобразованы в матричные, и наоборот, матричные — в аналоговые. Оцифровку аналоговых изображений с твердых носителей и ввод их в память компьютера осуществляют с помощью сканеров. Для оцифровки пленочных рентгенограмм применяются транспарентные сканеры – дигитайзеры. У этих сканеров рабочий диапазон оптической плотности должен быть выше 3,0 D. В качестве оцифровочного устройства может быть использована также цифровая фотокамера. Основным способом оцифровки рентгеновского изображения с УРИ или оптической системы является ПЗС-матрица (прибор с зарядовой связью). Кроме того, цифровые рентгеновские изображения могут получаться путем прямой рентгенографии на плоских полупроводниковых детекторах –ddR (digital direct Radiography) либо на основе технологии пластин с запоминающим люминофором – CR (Computer Radiography). Устройства для реализации технологии CR, также как и транспа-рентные сканеры, именуются дигитайзерами. В некоторых аппаратах для лучевой визуализации (гамма-камеры, ультразвуковые аппараты) цифровые изображения получаются из аналоговых с помощью аналого-цифровых преобразователей (АЦП).

Медицинские изображения в кардиологии собираются детекторами в точно заданные периоды кардиоцикла под управлением электрокардиограммы – т. н. ЭКГ-синхронизированные исследования. Таким путем осуществляются визуализацию сердца при рентгеновской компьютерной и магнитно-резонансной томографии, сцинтиграфии (ОФЭКТ и ПЭТ). Одновременно при этих исследованиях компьютер производит расчет и представление всех требуемых функциональных параметров сердечной деятельности Аналоговые изображения:

• традиционная пленочная рентгенография,

• линейная то мография,

• цифровая рентгенография • цифровая рентгеноскопия,

• компьютерная рентгеновская томография,

• дентальная компьютерная томография,

• однофотонная эмиссионная компьютерная томография

• позитронная эмиссионная томография (ПЭТ),

• ультразвуковое допплеровское картирование,

• мультимодальные (сплавленные, или гибридные) изображения (КТ/ОФЭКТ, КТ/ПЭТ, МРТ/ПЭТ).

3. Методы получения и преобразования медицинских цифровых изображений, их преимущества.

Три цифровые методики – компьютерная томография (КТ), ультрасонография (УС) и магнитно-резонансная томография (МРТ) считаются цифровыми технологиями, поскольку в них аналоговая ответная реакция (электрический ток) преобразуется в цифровую форму.

«Настоящее» цифровое изображение представлено в виде цифровой матрицы, т.е. в виде числовых строк и колонок. Числа могут отражать силу эхосигнала при ультразвуковом исследовании, ослабление рентгеновских лучей при КТ, магнитные свойства тканей при МРТ или интенсивность испускаемого флюоресцентным экраном света при цифровой проекционной рентгеновской визуализации. Для показа изображений цифровая матрица трансформируется в матрицу видимых элементов изображения – пикселов – где каждому пикселу, в соответствии со значением цифровой матрицы, присваивается один из оттенков серой шкалы.

Названные системы называются цифровыми или дигитальными, поскольку в них информация о параметрах выражается в цифровой двоичной системе.Цифровые технологии могут применяться и для проекционных рентгеновских методик, поэтому термин «цифровая рентгенография» обычно используется лишь в этом узком смысле.

Читайте также:  Способы финансирования сделки с недвижимостью

К преимуществам цифровых рентгенографических систем относятся следующие четыре фактора: цифровое отображение изображения; пониженная доза облучения; цифровая обработка изображений; цифровое хранение и улучшение качества изображений.
Методы преобразования:

Временной метод вычитания — это метод, который можно использовать с целью удаления фоновых структур, когда выявляемость представляющего интерес объекта повышается введением контрастного реагента. Изображения регистрируют с контрастным реагентом и без контрастного реагента, а затем осуществляют вычитание этих изображений.
Основным ограничением цифрового временного вычитания является его подверженность влиянию артефактов, обусловленных движением пациента между моментами времени, когда получаются изображения с контрастом и без контраста.
Временное вычитание неэффективно при контрастных исследованиях (например желчного пузыря), когда между введением контрастного вещества и визуализацией проходит значительное время. До и после контрастных изображений, разделяемых интервалом времени, равным нескольким секундам, может быть ошибка регистрации.

Наряду с временным вычитанием в технике цифровой рентгенографии применяется энергетическое вычитание, которое в меньшей степени подвержено действию артефактов. Временное вычитание зависит от изменений распределения контраста во времени, а при энергетическом вычитании используется выраженная разность свойств ослабления излучения различными органами и структурами человеческого организма. В качестве примера пара изображений может быть получена при двух энергиях E1 и E2 — несколько ниже и несколько выше области нарушения равномерности зависимости коэффициента ослабления излучения йода от энергии излучения. Изображения затем вычитаются одно из другого. В связи с тем, что коэффициент ослабления мягкой ткани изменяется незначительно при двух значениях энергии, тени от всех областей мягких тканей будут практически устранены на разностном изображении. А так как изменения коэффициента ослабления йода значительны, изображение йода сохранится. Контраст (йод—мягкая ткань) возрастает при получении разности изображения.

Источник

Получение и обработка медицинских изображений

Как было умомянуто выше, в настоящее время все большее распространение получают цифровые (матричные) медицинские изображения. Перевод в цифровую форму (с с момента получения изображения или в последующем, при преобразовании из аналоговых) облегчает обработку изображений, сохранение и передачу медицинских визуальных данных. Эти возможности значительно расширились с появлением автоматизированных рабочих мест (АРМ) с большим объемом памяти для хранения данных и достаточной вычислительной мощностью.

Информационные технологии могут помочь на всех этапах получения и обработки медицинских изображений. Компьютеры непосредственно принимают участие в образовании некоторых типов изображений, которые не могут быть получены другим способом: компьютерная томография, позитронная эмиссионная томография, ядерный магнитный резонанс.

Цифровая обработка изображений может использоваться с целью:

а) улучшения качества изображения за счет компенсации дефектов регистрирующей системы, и уменьшения шума;

б) расчета клинически важных количественных параметров (расстояния, площади, объема и т.д.);

в) облегчения интерпретации (распознавания структуры, вычисления дозы для лучевой терапии);

г) планирования автоматизированного хирургического вмешательства.

Сжатие изображений уменьшает объем памяти для хранения данных и время для их передачи.

Хранение переведенных в цифровую форму изображений (например, на CD) упрощают организацию архивов и доступ к ним.

Передача преобразованных в цифровую форму изображений между лечебными заведениями позволяет нескольким экспертам быстро консультироваться для принятия диагностических или терапевтических решений и улучшает контроль диагностики и лечения пациента (телерадиология, телепатология).

Во многих случаях для установления диагноза врач зрительно анализирует изображения отдельных сечений объекта, полученных при томографическом обследовании. Однако, для некоторых клинических задач, подобных хирургическому планированию, необходимо понимать 3D структуру во всей ее сложности и видеть дефекты. Опыт показал, что «умозрительная реконструкция» объектов по изображениям их сечений (визуализация объема) чрезвычайно трудна и сильно зависит от опыта и воображения наблюдателя. В таких случаях хотелось бы представить человеческое тело так, как его увидел бы хирург или анатом. Современные информационные технологии позволяют производить процедуру визуализации объема автоматически, при помощи компьютера.

Этапы визуализации

В памяти ЭВМ, как известно, хранятся только цифровые коды. В виде цифровых кодов хранятся и описания любых изображений. Для превращения этого моря нулей и единиц в картинку на экране компьютер должен выполнить определенные операции. Процесс визуализации цифровых кодов изображения называется рендеринг. Для его осуществления используют понятия элементарных единиц изображения: пиксель и воксель (объемная единица изображения).

Приведем обзор этапов, используемых при визуализации объема. На рис. 8.2. показаны все фазы конвейера визуализации объема. После получения серии томографических изображений частей тела пациента данные обычно подвергаются некоторым процедурам предобработки для преобразования и, возможно, фильтрации. Дальнейшая обработка может следовать несколькими путями.

Читайте также:  Создание юридических лиц нормативно явочный способ пример

При использовании конкретных методов отдельные шаги обработки могут быть опущены, совмещены или переставлены местами.

Для улучшения качества объем можно подвергнуть процедуре фильтрации, подобно тому, как это делается при обработке 2D изображений.

Следующий шаг состоит в идентификации различных объектов, представленных в объемных данных так, чтобы их можно было выделить для визуализации или, наоборот, сделать невидимыми. Этот шаг включает сегментацию и интерпретацию. Простейший способ состоит в бинаризации данных с использованием порога интенсивности, например, для выделения костей из других тканей в компьютерной томографии. Однако, в некоторых случаях, особенно при использовании данных МРТ, требуются более изощренные методы сегментации.

После сегментации существует выбор, какой из методов рендеринга использовать далее. Более традиционные подходы, которые основаны на представлении объектов их поверхностями, сначала создают промежуточную модель, выделяя поверхности объекта.

Рис 8.2. Этапы конвейера визуализации объема.

Далее выполняется рендеринг с использованием любого стандартного метода машинной графики. Относительно недавно были разработаны подходы, основанные на воксельном представлении объемов, которые создают трехмерные изображения объекта непосредственно из объемных данных. Эти методы используют полную информацию о значениях интенсивности полутонового изображения для рендеринга поверхностей, разрезов или прозрачных и полупрозрачных объемов.

Оба эти подхода имеют свои достоинства. Решение о том, какой из методов следует использовать для конкретного приложения, зависит как от размера памяти и мощности компьютера, так и от целей визуализации. Недавно был разработан новый подход к визуализации объема, использующий методы рендеринга, основанные на преобразованиях.

Наиболее важными структурами для описания объемных данных являются:

— бинарная воксельная модель: воксели могут принимать два значения: 1 (объект) или 0 (нет объекта). Эта очень простая модель и используется редко. Для того, чтобы уменьшить необходимый для хранения объем памяти, бинарные объемы могут быть рекурсивно разбиты на меньшие объемы, содержащие воксели равной величины; результирующая структура данных называется 8-деревом или октантным деревом.

— полутоновая воксельная модель: каждый воксель содержит информацию об интенсивности. Для полутоновых объемов также разработаны структуры в виде 8-дерева.

— обобщенная воксельная модель: кроме информации об интенсивности каждый воксель содержит атрибуты, характеризующие его принадлежность к различным объектам, и/или данные от других источников (например, МРТ или ПЭТ).

— «интеллектуальные объемы»: в качестве развития обобщенной воксельной модели рассматривается модель, в которой свойства объектов (такие как цвет, имена в различных языках, указатели на дополнительную информацию) и их взаимосвязи моделируются на символьном уровне. Подобная структура данных является основной для таких продвинутых приложений, как медицинские атласы.

Полутоновой объем обычно включает большое число различных структур, затеняющих друг друга. Для того, чтобы изобразить одну из них, следует решить, какую часть данных необходимо использовать, а какую игнорировать.

Первым шагом распознавания объекта должно быть разделение полутонового объема на разные области, которые являются однородными по отношению к некоторому формальному критерию и соответствуют реальным (анатомическим) объектам. Такой процесс называется сегментацией. Для представления результатов подходящей структурой данных является обобщенная воксельная модель. На следующем шаге интерпретации, области могут быть идентифицированы и соотнесены осмысленным понятиям, таким как «белое вещество» или «желудочек».

Все методы сегментации можно разделить на два типа: «бинарные» и «нечеткие», в соответствии с тем, какая логика положена в основу: бинарная или нечеткая. При бинарной сегментации ответ на вопрос, принадлежит ли воксель определенной области, всегда «да» или «нет». Такая информация является предпосылкой, например, для создания поверхностного представления по объемным данным. Однако недостатком метода является то, что он не справляется со случаями неопределенности или случаями, когда объект занимает только часть вокселя. В случае нечеткой сегментации не обязательно принимать точное решение «да» или «нет» – каждому вокселю приписываются вероятности того, что он принадлежит той или иной материи.

Сейчас имеется большое количество методов сегментации для 3D медицинских изображений, которые можно разбить на три типа: методы на основе точек, границ и областей. При сегментации на основе точек воксели классифицируются только в соответствии с величиной их интенсивности. При сегментации на основе границ, в изображаемом объеме определяют неоднородности в распределении интенсивности, используя для этого первые или вторые производные. При сегментации на основе областей, рассматриваются свойства целых областей, такие как размер или форма. Часто используется комбинация нескольких разных подходов.

Дата добавления: 2018-11-24 ; просмотров: 509 ; Мы поможем в написании вашей работы!

Источник

Оцените статью
Разные способы