Способы получения когерентных источников света зеркала френеля бипризма френеля способ юнга

Способы получения когерентных источников света зеркала френеля бипризма френеля способ юнга

Методы наблюдения интерференции

Свет, испускаемый обычными источниками, можно рассматривать как хаотическую последовательность отдельных цугов синусоидальных волн. Длительность отдельного цуга не превышает 10 — 8 с даже в тех случаях, когда атомы источника не взаимодействуют (газоразрядные лампы низкого давления). Любой регистрирующий прибор имеет значительно большее время разрешения, поэтому наблюдение интерференции невозможно.

Образование интерференционной картины можно наблюдать в рассмотренном нами в п. 8.2 опыте Юнга, использующем метод деления волнового фронта (рис. 8.3).

Прошедший через узкую длинную щель S свет, вследствие дифракции образует расходящийся пучок, который падает на второй экран B с двумя, параллельными между собой узкими щелями S1 и S2, расположенными близко друг к другу на равных расстояниях от S. Эти щели действуют как вторичные синфазные источники, и исходящие от них волны, перекрываясь, создают интерференционную картину, наблюдаемую на удаленном экране C. Расстояние между соседними полосами равно:

.

Измеряя ширину интерференционных полос, Юнг в 1802 г. впервые определил длины световых волн для разных цветов, хотя эти измерения и не были точными.

Другой интерференционный опыт, аналогичный опыту Юнга, но в меньшей степени осложненный явлениями дифракции и более светосильный, был осуществлен О. Френелем в 1816 г. Две когерентные световые волны получаются в результате отражения от двух зеркал М и N, плоскости которых наклонены под небольшим углом φ друг к другу (рис. 8.4).

Источником служит узкая ярко освещенная щель S, параллельная ребру между зеркалами. Отраженные от зеркал пучки падают на экран, и в той области, где они перекрываются (поле интерференции), возникает интерференционная картина. От прямого попадания лучей от источника S экран защищен ширмой . Для расчета освещенности J экрана можно считать, что интерферирующие волны испускаются вторичными источниками и , представляющими собой мнимые изображения щели S в зеркалах. Поэтому J будет определяться формулой двулучевой интерференции, в которой расстояние l от источников до экрана следует заменить на , где — расстояние от S до ребра зеркал, b — расстояние от ребра до экрана (см. рис 8.4.). Расстояние d между вторичными источниками равно: . Поэтому ширина интерференционной полосы на экране равна:

.

В данном интерференционном опыте, также предложенном Френелем, для разделения исходной световой волны на две используют призму с углом при вершине, близким к 180°.

Источником света служит ярко освещенная узкая щель S, параллельная преломляющему ребру бипризмы (рис. 8.5).

Можно считать, что здесь образуются два близких мнимых изображения S1 и S2 источника S, так как каждая половина бипризмы отклоняет лучи на небольшой угол .

Аналогичное бипризме Френеля устройство, в котором роль когерентных источников играют действительные изображения ярко освещенной щели, получается, если собирающую линзу разрезать по диаметру и половинки немного раздвинуть (рис. 8.6).

Прорезь закрывается непрозрачным экраном А, а падающие на линзу лучи проходят через действительные изображения щели и и дальше перекрываются, образуя интерференционное поле.

Источник

ВОЛНОВАЯ ОПТИКА

18.2. Способы получения когерентных источников

Когерентные источники получают, разделив световую волну, идущую от одного источника на две.

18.2.1. Опыт Юнга

Томас Юнг наблюдал интерференцию от двух источников, прокалывая на малом расстоянии (d ≈ 1мм) два маленьких отверстия в непрозрачном экране. Отверстия освещались светом от солнца, прошедшим через малое отверстие в другом непрозрачном экране.

Интерференционная картина наблюдалась на экране, удаленном на расстоянии L ≈ 1м от двух источников. Так, впервые в истории, Т. Юнг определил длины световых волн.

При использовании лазера в качестве источника света необходимость в экране отпадает.

18.2.2. Зеркала Френеля

Свет от узкой щели S падает на два плоских зеркала, развернутых друг относительно друга на очень малый угол φ . Используя закон отражения света (17.1.3.) нетрудно показать, что падающий пучок света разобьется на два, исходящих из мнимых источников S1 и S2 . Источник S закрывают от экрана наблюдения непрозрачным экраном.

18.2.3. Бипризма Френеля

Две стеклянные призмы с малым преломляющим углом θ изготавливают из одного куска стекла так, что призмы сложены своими основаниями, Источник света — ярко освещенная щель S . После преломления в бипризме падающий пучок расщепляется на два, исходящих от мнимых источников S1 и S2 , которые дают две когерентные цилиндрические волны.

Так как преломляющий угол θ мал, то все лучи отклоняются каждой из половинок бипризмы на один и тот же угол φ . Можно показать, что в этом случае

,

здесь n — показатель преломления материала призмы.

Расстояние между источниками:

.

18.2.4. Интерференция при отражении от прозрачных пластинок

Луч света, падающий на прозрачную пластинку, частично отражается и частично преломляется. Преломленный луч, отражаясь от нижней поверхности пластинки, идет к верхней и преломляется на ней второй раз. Таким образом получаются два луча.

Если источник света естественный, то необходимым условием когерентности является малая толщина пластинок (интерференция в тонких пленках). При освещении лазерным лучом это ограничение отпадает.

При определении оптической разности хода необходимо учитывать изменение фазы отраженной волны на противоположную, если отражение происходит от оптически более плотной среды.

.

.

Здесь λ0/2 появилась за счет изменения фазы волны на противоположную при отражении в точке A . Связь разности фаз δ и разности хода Δ , см. (18.1.2.2.).

18.2.4.1. Кольца Ньютона

Плосковыпуклая линза большого радиуса кладется на стеклянную пластинку и освещается сверху параллельным пучком света. Так как радиус линзы R велик по сравнению с r — радиусом интерференционных полос, то угол падения света на внутреннюю поверхность линзы i ≈ 0 . Тогда геометрическая разность хода с большой точностью равна 2b . При нахождении оптической разности хода следует учитывать изменение фазы на противоположную при отражении от оптически более плотной среды. Связь между b, r и R нетрудно найти из геометрических соображений.

Если в зазоре между линзой и пластиной n = 1 , то для радиуса интерференционных полос (колец Ньютона) получается формула:

При четном m кольца Ньютона темные, в частности при m = 0, r = 0 и в центре наблюдается темное пятно (из-за потери λ0/2 при отражении от стеклянной пластинки).

Если m нечетное, то кольца светлые.

18.3. Многолучевая интерференция

Пусть в заданную точку экрана посылают световые волны N источников одинаковой интенсивности ( N > 2 ).

Предположим, что колебание, возбуждаемое каждым последующим источником сдвинуто по фазе относительно предыдущего на δ . Результирующую амплитуду A можно выразить через A0 — амплитуду от одного источника, используя метод векторной диаграммы (14.3.1, 14.3.2).

Выразим A и A0 через вспомогательный параметр R — радиус окружности, на которой лежат начала и концы наших векторов:

После исключения R получим амплитуду результирующего колебания:

.

Если δ = 0 (все колебания имеют одинаковую фазу) полученное выражение становится неопределенным. Взяв производную по δ от числителя и знаменателя, найдем по правилу Лопиталя, что при δ = 0 амплитуда результирующего колебания:

.

Этот результат непосредственно очевиден из векторной диаграммы, построенной для случая δ = 0 , т.к. все векторы будут направлены вдоль одной прямой. Интенсивность света (16.5.4) I

.

.

Источник

Читайте также:  Каким организмом является лишайник по способу питания
Оцените статью
Разные способы