Способы получения кислотных оксидов с примерами

Кислотные оксиды — получение и химические свойства

Кислотными называются оксиды, взаимодействующие с основаниями (или основными оксидами) с образованием солей.

Кислотные оксиды представляют собой оксиды неметаллов или переходных металлов в высоких степенях окисления, им соответствуют кислотные гидроксиды, обладающие свойствами кислот.
Например, S +6 O3 → H2S +6 O4; N2 +5 O5 → HN +5 O3, причем степень окисления элемента не изменяется при переходе от оксида к гидроксиду.

Получение кислотных оксидов

1. Окисление кислородом

2. Горение сложных веществ

Химические свойства кислотных оксидов

1. Большинство кислотных оксидов непосредственно взаимодействуют с водой с образованием кислот:

2. Наиболее типичными для кислотных оксидов являются их следующие реакции с образованием солей:

с основными оксидами: SO3 + Na2O = Na2SO4
с амфотерными оксидами: P2O5 + Al2O3 = 2AlPO4
со щелочами: CO2 + 2KOH = K2CO3 + H2O

3. Кислотные оксиды могут вступать в многочисленные окислительно-восстановительные реакции, например,

4. Менее летучие кислотные оксиды вытесняют более летучие кислотные оксиды из их солей (сплавление):

Источник

Способы получения кислотных оксидов.

2. Путём доокисления других оксидов до кислотных кислородом: 2 SO2 + O2 2 SO3

2 CO + O2 CO2 – эта реакция протекает при комнатной температуре в гопкалитовом патроне противогаза для пожарных.

3. Путём доокисления других оксидов озоном:

4. Путём реакции димеризации: 2 NO2 N2O4 Равновесие в этой реакции на морозе смещается вправо , а принагревании влево.

5. Путём разложения веществ.

5.2. Солей: наряду с кислотными оксидами получаются так же основные или амфотерные оксиды.

Из карбонатов можно получить кислотный оксид – CO2 по реакции: MeCO3 MeO + CO2. Температура разложения сильно зависит от природы металла:

Me Be Mg Ca Sr Ba
tразложения о С

Из нитратов металлов также можно получать кислотный оксид — NO2. Если это нитрат металла, стоящего в ряду напряженный от Mg до Cu включительно, то при прокаливании получаются оксид металла (основный или амфотерный), оксид азота (IV) и кислород (кроме нитрата марганца, где кислород не выделяется):

Нитраты металлов, стоящих в ряду напряжений после меди разлагаются на металл, оксид азота IV и кислород:

6. Путём обмена между кислотными оксидами и кислотами:

7. Путём обмена между оксидами и солями:

8. Путём взаимодействия солей нестойких кислот с кислотами:

9. Некоторые кислотные оксиды получаются в результате специфических реакций, например,

Источник

Химические свойства кислотных оксидов

1. Кислотные оксиды взаимодействуют с основными оксидами и основаниями с образованием солей.

При этом действует правило — хотя бы одному из оксидов должен соответствовать сильный гидроксид (кислота или щелочь).

Кислотные оксиды сильных и растворимых кислот взаимодействуют с любыми основными оксидами и основаниями:

Кислотные оксиды нерастворимых в воде и неустойчивых или летучих кислот взаимодействуют только с сильными основаниями (щелочами) и их оксидами. При этом возможно образование кислых и основных солей, в зависимости от соотношения и состава реагентов.

Например , оксид натрия взаимодействует с оксидом углерода (IV), а оксид меди (II), которому соответствует нерастворимое основание Cu(OH)2 — практически не взаимодействует с оксидом углерода (IV):

CuO + CO2

2. Кислотные оксиды взаимодействуют с водой с образованием кислот.

Исключение — оксид кремния, которому соответствует нерастворимая кремниевая кислота. Оксиды, которым соответствуют неустойчивые кислоты, как правило, реагируют с водой обратимо и в очень малой степени.

3. Кислотные оксиды взаимодействуют с амфотерными оксидами и гидроксидами с образованием соли или соли и воды.

Обратите внимание — с амфотерными оксидами и гидроксидами взаимодействуют, как правило, только оксиды сильных или средних кислот!

Например , ангидрид серной кислоты (оксид серы (VI)) взаимодействует с оксидом алюминия и гидроксидом алюминия с образованием соли — сульфата алюминия:

А вот оксид углерода (IV), которому соответствует слабая угольная кислота, с оксидом алюминия и гидроксидом алюминия уже не взаимодействует:

4. Кислотные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей.

Например , твердый оксид кремния SiO2 вытеснит более летучий углекислый газ из карбоната кальция при сплавлении:

5. Кислотные оксиды способны проявлять окислительные свойства.

Как правило, оксиды элементов в высшей степени окисления — типичные окислители (SO3, N2O5, CrO3 и др.). Сильные окислительные свойства проявляют и некоторые элементы с промежуточной степенью окисления (NO2 и др.).

6. Восстановительные свойства.

Восстановительные свойства, как правило, проявляют оксиды элементов в промежуточной степени окисления (CO, NO, SO2 и др.). При этом они окисляются до высшей или ближайшей устойчивой степени окисления.

Например , оксид серы (IV) окисляется кислородом до оксида серы (VI):

Источник

Оксиды: классификация, получение и химические свойства

Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых — кислород со степенью окисления -2. При этом кислород связан только с менее электроотрицательным элементом.

Читайте также:  Способ передачи золотистого стафилококка

В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).

Двойные оксиды — это некоторые оксиды , образованные элементом с разными степенями окисления.

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.

Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.

Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO.

Классификация оксидов

Получение оксидов

Общие способы получения оксидов:

1. Взаимодействие простых веществ с кислородом :

1.1. Окисление металлов: большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.

Например , алюминий взаимодействует с кислородом с образованием оксида:

Не взаимодействуют с кислородом золото, платина, палладий.

Натрий при окислении кислородом воздуха образует преимущественно пероксид Na2O2,

Калий, цезий, рубидий образуют преимущественно пероксиды состава MeO2:

Примечания : металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):

Железо также горит с образованием железной окалины — оксида железа (II, III):

1.2. Окисление простых веществ-неметаллов.

Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.

Например , фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):

Но есть некоторые исключения .

Например , сера сгорает только до оксида серы (IV):

Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:

2SO2 + O2 = 2SO3

Азот окисляется кислородом только при очень высокой температуре (около 2000 о С), либо под действием электрического разряда, и только до оксида азота (II):

Не окисляется кислородом фтор F2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl2, бром и др.), инертные газы (гелий He, неон, аргон, криптон).

2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.

При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.

Например , при сжигании пирита FeS2 образуются оксид железа (III) и оксид серы (IV):

Сероводород горит с образованием оксида серы (IV) при избытке кислорода и с образованием серы при недостатке кислорода:

А вот аммиак горит с образованием простого вещества N2, т.к. азот реагирует с кислородом только в жестких условиях:

А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):

3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).

гидроксид → оксид + вода

Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:

4. Еще один способ получения оксидов — разложение сложных соединений — солей .

Например , нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:

Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:

Более подробно про разложение нитратов можно прочитать в статье Окислительно-восстановительные реакции.

Химические свойства оксидов

Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.

Химические свойства основных оксидов

Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:

Источник

Свойства кислотных оксидов

Получение оксидов в химии

Любой оксид можно получить несколькими способами.

Получение оксида окислением простых веществ. Реакции на примере металлов и неметаллов:

Получение оксида окислением сложных веществ. Реакции на примере бинарных и водородных соединений:

Бинарные соединения

Оксиды можно получить, когда разлагаются вещества, такие как соли, основания и кислоты:

Получение оксида окислением кислорода и озона:

Видео

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

Читайте также:  Способы получения огня трением

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

а в случае недостатка HF:

2) SO2, будучи кислотным оксидом, легко реагирует с сероводородной кислотой H2S по типу сопропорционирования:

3) Оксид фосфора (III) P2O3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P2O3 + 2H2SO4 + H2O =t o => 2SO2 + 2H3PO4
(конц.)
3P2O3 + 4HNO3 + 7H2O =t o => 4NO↑ + 6H3PO4
(разб.)
P2O3 + 4HNO3 + H2O =t o => 2H3PO4 + 4NO2
(конц.)

4) Оксид серы (IV) SO2 может быть окислен азотной кислотой, взятой в любой концентрации. При этом степень окисления серы повышается с +4 до +6.

2HNO3 + SO2 =t o => H2SO4 + 2NO2
(конц.)
2HNO3 + 3SO2 + 2H2O =t o => 3H2SO4 + 2NO↑
(разб.)

Взаимодействие с водой

Все кислотные остатки при взаимодействии с водой создают соответствующую кислоту. При этом для ангидридов сильных кислот реакция будет необратимой. А неустойчивые оксиды реагируют с водой обратимо, и равновесие реакции смещено в сторону реагентов.

SO3 + H2O → H2SО4

CO2 + H2O = H2CO3

Исключением является оксид кремния, так как кремниевая кислота нерастворима в воде.

Химические свойства

Окислительно-восстановительные свойства

Чаще всего кислотные ангидриды проявляют окислительные свойства, принимая электроны. Это присуще тем соединениям, где атом неметалла находится в высшей степени окисления. Однако вещества с промежуточными зарядами также способны выступить в роли окислителей.

N2O + Mg = N2 + MgO

Но чаще всего атомы с промежуточной степенью окисления проявляют восстановительные свойства. Они отдают электроны и увеличивают свой заряд до максимального значения. Или до ближайшего устойчивого состояния.

В таблице Менделеева для элементов, стоящих в одном периоде, кислотные свойства увеличиваются с ростом номера группы. А для атомов одной группы с ростом номера периода будет происходить уменьшение способности отдавать электроны.

Оксиды азота

Азот — газ, который образует 5 различных соединений с кислородом — 5 оксидов азота. А именно:

— N2O — гемиоксид азота. Другое его название известно в медицине под названием веселящий газ или закись азота — это бесцветный сладковатый и приятный на вкус на газ. — NO — моноксид азота — бесцветный, не имеющий ни запаха ни вкуса газ. — N2O3азотистый ангидрид — бесцветное кристаллическое вещество — NO2диоксид азота. Другое его название — бурый газ — газ действительно имеет буро-коричневый цвет — N2O5азотный ангидрид — синяя жидкость, кипящая при температуре 3,5 C

Из всех этих перечисленных соединений азота наибольший интерес в промышленности представляют NO — моноксид азота и NO2 — диоксид азота. Моноксид азота (NO) и закись азота N2O не реагируют ни с водой, ни с щелочами. Азотистый ангидрид (N2O3) при реакции с водой образует слабую и неустойчивую азотистую кислоту HNO2, которая на воздухе постепенно переходит в более стойкое химическое вещество азотную кислоту Рассмотрим некоторые химические свойства оксидов азота:

Реакция с водой:

2NO2 + H2O→ HNO3 + HNO2 — образуется сразу 2 кислоты: азотная кислота HNO3 и азотистая кислота.

2NO2 + 2NaOH→ NaNO3 + NaNO2 + H2O — образуются две соли: нитрат натрия NaNO3 (или натриевая селитра) и нитрит натрия (соль азотистой кислоты).

Реакция с солями:

2NO2 + Na2CO3→ NaNO3 + NaNO2 + CO2 — образуются образуются две соли: нитрат натрия и нитрит натрия, и выделяется углекислый газ.

Получают диоксид азота (NO2) из моноксида азота (NO) с помощью химической реакции соединения c кислородом:

Кислоты

Кислоты — это сложные вещества, в состав молекул которых входит активный атом водорода и кислотный остаток. Этот активный атом водорода в химических реакциях способен замещаться на атом металла, в результате чего всегда получается соль.

В формулах неорганических кислот этот атом водорода записывается на первом месте*:

* В химических формулах органических кислот атом водорода стоит в конце, например, CH3–COOH уксусная кислота

В состав любой кислоты кроме атомов водорода входит кислотный остаток. Кислотный остаток — это часть молекулы кислоты без атомов водорода (которые могут быть замещены на атом металла). Валентность кислотного остатка равна числу таких атомов водорода:

При определении валентности кислотного остатка учитываются те атомы водорода, которые участвовали в реакции или могут участвовать в ней. Так, фосфорной кислоте Н3РО4, в зависимости от условий, могут соответствовать кислотные остатки иного состава:

У органических кислот не все атомы водорода в молекуле способны замещаться на атом металла:

Задание 2.13. Определите состав и валентность кислотных остатков для кислот, учитывая, что все атомы водорода кислот участвуют в реакции:

По числу атомов водорода кислоты делят на одноосновные и многоосновные:

  • НСl — одноосновная, так как один атом водорода;
  • Н2СО3двухосновная, так как два атома водорода.

По составу кислоты делят на:

Бескислородные кислоты представляют собой растворы некоторых газов в воде, при этом и растворённому газу, и полученному раствору приписывают одинаковые свойства, хотя это не так. Например, из простых веществ водорода и хлора получается газ хлороводород:

Этот газ не проявляет кислотных свойств, если он сухой: его можно перевозить в металлических ёмкостях, и никакой реакции не происходит. Но при растворении хлороводорода в воде получается раствор, который проявляет свойства сильной кислоты, её перевозить в металлических ёмкостях нельзя! Этот раствор называется «соляная кислота».

Читайте также:  Оперативные штанги виды назначение способы применения

Названия бескислородных кислот составляют по принципу:

«ЭЛЕМЕНТ» + «ВОДОРОД»ная кислота

  • H2S — сероводородная кислота (это раствор газа сероводорода в воде);
  • НСl — хлороводородная (соляная) кислота (это раствор газа хлороводорода в воде);
  • НF — фтороводородная (плавиковая) кислота (это раствор газа фтороводорода в воде).

Кислородсодержащие кислоты могут быть получены при действии воды на кислотные оксиды (см. задание 2.6). Исходные кислотные оксиды называются «АНГИДРИДЫ кислот»:

Метафосфорная кислота неустойчива и, присоединяя воду, превращается в более устойчивую кислоту:

или в суммарном виде:

Таким образом, Р2O5ангидрид фосфорной кислоты, а также некоторых других, менее устойчивых кислот.

Обратите внимание! Название кислородосодержащей кислоты содержит в виде корня название элемента, входящего в состав ангидрида:

Если элементу соответствуют несколько кислот, то для кислоты с большей валентностью элемента, входящего в состав ангидрида, в названии употребляют суффикс «Н» или «В». Для кислот с меньшей валентностью элемента в названиях добавляют еще один суффикс «ИСТ».

Валентность элемента проще всего определять по формуле ангидрида:

Обратим внимание, что в названии сернистой кислоты основной суффикс -ИСТ-, а суффикс -Н- введён дополнительно для благозвучия.

Сведём всё известное о названиях кислот в таблицу 4.

Задание 2.14. Заполнить табл. 4, заменив знаки вопросов формулами и названиями соответствующих кислот.

Задание 2.15. Напишите НА ПАМЯТЬ формулы кислот: кремниевой, сернистой, серной, сероводородной, азотистой, азотной, соляной, фосфорной, угольной. Укажите ангидриды этих кислот (там, где они существуют).

Свойства кислот

Главным свойством всех кислот является их способность образовывать соли. Соли образуются в любой реакции, в которой участвует кислота, при этом замещаются активные атомы водорода (один, все или несколько).

1. Кислоты реагируют с металлами, при этом атом водорода кислоты замещается на атом металла — в результате образуется растворимая соль* и водород:

* Если образуется нерастворимая соль, то эта соль закрывает поверхность металла и реакция останавливается.

Не все металлы способны вытеснять водород из растворов кислот: этот процесс возможен только для тех металлов, которые стоят в ряду напряжений ДО водорода (рис. 3 или таблица 3).

Задание 2.16. Составьте уравнения возможных реакций:

  1. серная кислота + алюминий →
  2. соляная кислота + серебро →
  3. бромоводородная кислота + цинк →

При составлении уравнений пользуйтесь рядом напряжений и схемой реакции:

кислота + металл (до водорода) → соль + водород

Не забывайте, составляя формулы солей, учитывать валентность металла и кислотного остатка.

Некоторые кислоты могут растворять металлы, которые стоят в ряду напряжения после водорода, но водород при этом не выделяется:

2. Кислоты реагируют с основаниями, образуя соль и воду*. Это реакция обмена, и поэтому валентность составных частей в результате реакции не меняется:

* Реакция между кислотой и основанием называется реакцией нейтрализации.

Задание 2.17. Составьте аналогичные уравнения реакций по схеме:

кислота + основание → соль + вода

  • серной кислоты и Fe(ОН)3;
  • соляной кислоты и Ва(ОН)2;
  • сернистой кислоты и NаОН.
  • составить формулу соли по валентности металла и кислотного остатка;
  • расставить коэффициенты.

3. Кислоты могут реагировать с солями. При этом сильная кислота вытесняет более слабую из её соли.

  • К сильным кислотам относятся: серная, азотная, соляная и др.
  • К слабым кислотам относятся: угольная, кремниевая, сероводородная, азотистая.

Происходит реакция обмена: образуется новая соль и новая кислота.

Более подробно о подобных реакциях см. в уроке 6.

Задание 2.18. Составьте НА ПАМЯТЬ формулы: а) сильных, б) слабых кислот.

Задание 2.19. Составьте уравнения реакций по схеме:

(более сильная) кислота + сольсоль + кислота (более слабая):

4. И, наконец, выяснив свойства кислот, зададим себе вопрос: а можно ли обнаружить кислоту в растворе? Например, в одном стакане налита вода, а в другом — раствор кислоты. Как определить, где кислота? Хотя многие кислоты кислые на вкус, пробовать их НЕЛЬЗЯ — это опасно! Выручают особые вещества — ИНДИКАТОРЫ. Это соединения, которые изменяют цвет в присутствии кислот:

  • синий ЛАКМУС становится красным;
  • оранжевый МЕТИЛОРАНЖ тоже становится красным.

Выводы

  • по числу атомов водорода на одноосновные, двухосновные и т. д.,
  • по наличию атома кислорода в составе молекулы на бескислородные и кислородсодержащие,
  • по силе на сильные и слабые,
  • по устойчивости на устойчивые и неустойчивые.
  • с активными металлами (до «Н»),
  • с основаниями,
  • с основными и амфотерными оксидами,
  • с солями более слабых кислот.

Кислоты обнаруживаются индикаторами в кислой («красной») области.

Тест для закрепления материала

  1. 1 Что такое кислотные оксиды?
    • Соединения, которые содержат атомы металлов
    • Соединения, содержащие кислород и образовывающие кислоты
    • Соединения с щелочными металлами
  • 2 Углекислый газ играет важную роль:
    • В процессе полимеризации
    • В процессе фотосинтеза
    • В процессе этерификации
  • 3 Оксид алюминия относится к:
    • Основным
    • Амфотерным
    • Кислотным
  • 4 В кислотных оксидах кислород имеет степень окисления:
    • +2
    • -2
  • 5 Кислотные оксиды получают в результате:
    • Процесса поликонденсации
    • Процесса горения
    • Процесса полимеризации
  • 6 Качественная реакция на углекислый газ:
    • С известковой водой
    • С бромной водой
    • С хромовой смесью

    Источник

  • Оцените статью
    Разные способы