- Обзор технологий получения искусственных алмазов
- Способы получения искусственных кристаллов алмаза
- Искусственные бриллианты: как называются, из чего делают искусственный алмаз и как он используется в промышленности
- Как появились синтетические алмазы?
- Название искусственных бриллиантов
- Фианит
- Муассанит
- Лейкосапфир
- Рутил
- Стразы
- Из чего делают искусственные бриллианты
- Где применяют синтетические алмазы?
- Цена искусственных алмазов
Обзор технологий получения искусственных алмазов
На сегодняшний день существует множество различных технологий получения кристаллов алмаза, для самых разнообразных целей применения, различной величины, окраски и прочности.
Алмаз есть не что иное, как чистый углерод с особой кристаллической решеткой.
Другим представителем чистого углерода на Земле является древесный уголь, графит.
Характеристика углерода:
- Атомный вес углерода 12.011;
- Порядковый номер в периодической системе Менделеева 6;
- Количество электронов 6;
- основная валентность 4;
- При нормальном атмосферном давлении в жидкость не переходит;
- При нагревании при нормальном давлении до температуры 3670 0 С, углерод;
переходит в газ, минуя жидкое состояние.
- Плотность 3.5 гр. см 2 ;
- Преломление света 2,42 (Стекло 1, 8);
- Твердость 2 000 000 усл. ед. (Сталь 30 000, стекло 40 000 относительно талька у которого твердость =1 );
- Температура перехода в графит в открытом воздухе — 1200 0 С;
- Температура возгорания в среде чистого кислорода 740 0 С;
- Единицы измерения алмазов — карат. Один карат равен 0.2 грамма. Алмаз, размерами 1 x 1 см = 17,5 каратов;
- В алмазе каждый атом углерода соединен с 4 другими атомами углерода и расстояние между ними строго одинаково = 1,54 ангстрем. Расположены атомы углерода в алмазе по углам правильного тетраэдра атомной кристаллической решетки.
- Атомная кристаллическая решетка алмаза — тетраэдр
Температура испарения углерода составляет 3670 0 С (диаграмма 1) критическая точка (Z) (температура 3670 0 С. давление -120 атм.) называется первой точкой тройного состояния.
В этой точке возможны переходы углерода в твердое, газообразное или жидкое состояние.
При повышении давления и температуры, получаем вторую тройную точку (D), в которой возможны состояние углерода в виде кристаллов (алмаз), в виде жидкости и аморфном состоянии (графит).
Наилучший результат получения алмазов при переходе из жидкого состояния углерода в кристаллическое — снижение температуры, но по возможности, оставляя очень высокое давление. Огромное значение в технологии производства алмазов играют временные характеристики процесса.
Как было ранее отмечено, углерода в жидком состоянии при нормальных условиях (760 мм рт. столба и 20 0 С) не существует. Углерод в жидком состоянии возможен и существует только при давлении свыше 120 атм. и 3740 0 С. (диаграмма 1).
Из физических свойств алмаза следует отметить температуру возгорания в среде кислорода которая равна 670 0 С, в основном алмаз сгорает без остатка.
При нагревании алмаза свыше 1200 0 С без воздуха начинается процесс графитизации алмаза, это и происходит при неправильной технологии процесса производства алмазов.
Способы получения искусственных кристаллов алмаза
Первым способом получения искусственных алмазов является метод приближенный к естественному возникновению природных алмазов, это сочетание очень высокого давления и высокой температуры.
Первый способ самый надежный, но и самый технологически сложный
Ниже приводится одна из лабораторных установок по получению кристаллов алмаза максимально приближенной к предполагаемой природной схеме возникновения алмазов в земной толще — мощное давление, высокая температура.
Приложение 1.
Лабораторная установка по получению искусственных алмазов представляет собой пресс высокого давления. В корпус пресса вставляется рабочий цилиндр.
В этом цилиндре предусмотрены сверления для циркуляции хладагента, и отверстия для подачи воды под давлением. В этот корпус вставляется камера, выполненная из карбида тантала в которой размещают заготовку — графит который должен превратится в алмаз.
Предусмотрен подвод медных шин для подачи электрического тока к рабочей камере.
Технология получения алмаза происходит в несколько этапов.
Вначале, после установки цилиндра в пресс высокого давления, подается вода и происходит процесс предварительного сжатия графита давлением воды, примерно до 2-3 тысячи атмосфер. Вторым этапом подается хладоагент и замораживается вода до температуры минус 12 градусов Цельсия.
При этом происходит дополнительное сжатие графита до 20 тысяч атмосфер за счет расширения льда.
На следующем этапе подается мощный импульс электрического тока продолжительностью 0.3 секунды.
На заключительном этапе размораживают лед и вынимают алмазы.
Полученные подобным образом алмазы в основном грязного цвета, имеют пористую структуру, форма кристаллов тетраэдрическая.
В большинстве своем прочнее естественных алмазов и в основном служат для технических целей.
Второй способ
Вторым способом, возможно технологически простым, но сложным по применяемой аппаратуре является способ наращивания кристаллов алмаза в среде метана (СН4).
При этом методе кристалл алмаза нагревают до температуры 1111 0 С. и обдувают метаном. Давление в рабочей камере может быть небольшим, порядка 0,1 технической атмосферы. Это давление в основном служит для препятствия проникновения в камеру атмосферного кислорода.
Необходимо помнить, что начиная с 1200 0 С алмаз начинает свой переход в состояние графита (без доступа кмслорода).
Процесс наращивания кристалла алмаза происходит на раскаленной поверхности алмаза путем добавления атомов углерода в существующую кристаллическую решетку затравочного кристалла алмаза. Количество выделенного углерода (алмаза) 0.2 % от поверхности затравочного кристалла за один час.
Форма кристаллов получаемая подобным способом кубическая, в отличии от природной тетраэдрической, цвет черный, прочность сопоставима с естественными алмазами. По своей сути это чистый карбид, но называется алмазом в связи с очень высокой твердостью полученных кристаллов, и в связи с тем, что в качестве затравочного кристалла используют настоящие алмазы.
Третьим способом получения алмазов является метод взрыва
При этом способе получают очень мелкую алмазную пыль для производства заточных камней, абразивов. Применяют или взрыв «обычного» взрывчатого вещества, или взрыв проволоки большим импульсом тока.
Для получения плотной детонационной волны необходима мембрана которая рвется со скоростью звука в том металле из которого изготовлена мембрана ( для железа это — 5000 м/сек.).
«Подогретый» графит, находящийся на так называемой «сковородке» в момент прохождения детонационной волны превращается в кристаллы алмаза.
Этот способ дает выход продукции намного больше в процентном отношении от количества графита, чем способ высокого давления.
Кристаллы получаются бесцветные, чистейшей воды, прозрачные, но очень мелкие (30 — 50 мкрн.). Форма кристаллов тетраэдрическая прочность сопоставима с природными алмазами.
Сущность данного способа получения алмазов, методом взрыва, заключается в том, что при подрыве взрывчатого вещества в замкнутом пространстве, детонационная волна при ударе с препятствием на пограничном слое, ударная волна — препятствие, создает одновременно и высокое давление и высокую температуру. Давление может достигать свыше 300 000 атм, температура десятки тысяч градусов. К сожалению ( или к счастью) все это по времени укладывается в миллионные доли секунды и размеры (толщина) детонационной волны не превышает 10-30 микрон.
В момент разрыва мембраны ударная волна приобретает «плотность» и своего рода такое качество как — гомогенность.
Некоторые кристаллики алмазов получаемые подобным способом могут иметь в диаметре до 50 мк. Большое значение в данном способе имеет положка на которой расположен подогретый графит и толщина рабочего слоя.
Интересны эксперименты по «вторичному» прессованию полученных алмазов тем же способом взрыва, по принципу порошковой металлургии. В данном случае, в алмазном производстве , можно получить кристаллы различного размера и веса из алмазного порошка. В подавляющем большинстве кристаллы мутного цвета. Отмечается хрупкость полученных вторичных кристаллов алмаза . Прочность намного ниже естественных, при обработки возможны «сюрпризы». В данном случае жадность может сгубить идею в самом прямом смысле этого понимания. Толщину графита не рекомендуется превышать 60 микрон.
В четвертом способе получения алмазов применяют катализаторы
Применение катализаторов в алмазном производстве значительно помогает сократить величину давления и температуру. Кристаллы алмаза образуются в разделительном слое между раскаленным графитом и пленкой металла катализатора. При соответствующих подборах технологий можно получать до 50 граммов технических алмазов за один технологический цикл.
Как видим, из диаграммы 3 , приложение 3 , наилучшим катализатором является железо, затем следуют никель, родий, палладий, платина.
Возникающие на границе перехода графит – катализатор, кристаллы алмаза продолжают свой рост при неизменных условий в рабочей камере до тех пор пока пленка из металла катализатора продолжает соединяться с графитом.
Приложение 3
Рост кристаллов продолжается и в самом легирующем металле за счет проникновения атомов углерода через тонкую пленку металла.
Искусственные алмазы полученные подобным способом представляют собой очень мелкие кристаллы (30 -200 микрон).
Полученные при низких температурах кристаллы алмазов имеют квадратную форму строения кристаллов, черного цвета, по прочности равны или превосходят естественные.
Кристаллы полученные при высоких температурах и больших давлениях имеют октаэдрическую форму, цвет различен — желтый, синий, зеленый, белый, прозрачные и непрозрачные кристаллы. По прочности равны или превосходят естественные алмазы. Влияние катализаторов на цвет очевидно. Примесь никеля в кристаллах алмаза придает алмазу зеленоватые тона, присадки бериллия придают алмазам синие тона расцветки.
Следует отметить, что по твердости нет в мире элемента тверже алмаза , хотя по другим свойствам он может уступать некоторым искусственным элементам. В таблице приведены элементы которые могут дать более полное представление о некоторых свойствах алмаза в сравнении c другими земными элементами.
1. Электромагнитная волна (в религиозной терминологии релятивизма — «свет») имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например,
200 тыс км/с в стекле и
3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью «Температура эфира и красные смещения»), разную скорость для разных частот (см. статью «О скорости ЭМ-волн»)
2. В релятивизме «свет» есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский «свет» — это волнение ничего в ничем. У него нет среды-носителя колебаний.
3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.
4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те «подтверждающие теорию Эйнштейна факты», которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.
Источник
Искусственные бриллианты: как называются, из чего делают искусственный алмаз и как он используется в промышленности
Алмаз ювелирного качества – одно из самых совершенных творений природы. Достаточно взглянуть на бриллиант чистой воды – и сразу понимаешь: вот он, Идеал! Человек горд и амбициозен: он стремится не только скопировать шедевры природы, но и усовершенствовать их.
Синтетический бриллиант – это абсолютная копия природного алмаза, но лишенная недостатков, присущих натуральному минералу. Чтобы создать технологии, позволяющие выращивать сияющие кристаллы в лабораторных условиях, Человечеству пришлось проделать долгий путь.
Да, искусственные алмазы стоят дешевле природных аналогов и не имеют инвестиционной ценности. Однако для их добычи не используется каторжный труд (блокбастер «Кровавый алмаз» смотрели?), не наносится ущерб природе, да и украшения с синтетическими бриллиантами доступны большему числу любителей драгоценностей.
Как появились синтетические алмазы?
Природные алмазы ювелирного качества достаточно редки, да и добыча их – весьма дорогостоящий процесс. Это обуславливает очень высокую цену на эти поистине королевские камни.
Алмазы образуются на огромных глубинах, под чудовищным давлением, а затем, в ходе вулканических процессов, выносятся ближе к поверхности. Они залегают в гигантских кимберлитовых трубках, и чтобы добыть один алмаз, привлекательный с ювелирной точки зрения, нужно переработать сотни тонн породы.
Процесс образования алмазов растягивается на сотни миллионов лет. Их запасы постепенно истощаются, что вызывает неуклонный рост цен. Именно поэтому бриллианты естественного происхождения представляют серьезный интерес в плане инвестиций.
Попытки создать искусственный бриллиант предпринимались давно – аж с позапрошлого века, когда была открыта формула алмаза. Чарующие камни оказались обычным углеродом, то есть, близкими родственниками обычного графита и каменного угля. А необыкновенную твердость, прозрачность, блеск и прочие черты, присущие алмазу, углерод обрел благодаря особой кубической кристаллической решетке.
Долгое время состояние науки и техники не позволяло получить кристалл алмаза в искусственных условиях. Ученые периодически сообщали о якобы удачных попытках вырастить алмаз, однако до середины прошлого столетия они были фальсификацией.
Золотые серьги из коллекции «Бриллианты Якутии» (перейти в каталог SUNLIGHT)
Пальма первенства в этом отношении принадлежит шведскому ученому Бальцару фон Платену – ему в 1953 году удалось впервые получить алмаз в искусственных условиях. А затем технология производства была усовершенствована уже американскими исследователями.
Первые искусственные алмазы появились на рынке несколько лет спустя, ученые других стран научились выращивать алмазы в лабораториях, но до настоящего успеха было еще далеко: синтетические минералы не отличались высоким качеством и могли использоваться исключительно в технических целях.
Со временем технологии совершенствовались, и в 1970 году Герберту Стронгу и Роберту Уэнторфу из американской корпорации General Electric удалось наконец получить алмазы ювелирного качества весом до одного карата. Но использованная ими технология оказалась нерентабельной: себестоимость производства синтетических камней приближается к цене натуральных алмазов, а то и превосходит ее.
Самый крупный алмаз ювелирного качества из известных на данный момент был выращен в 2015 году. Чистейший бриллиант в 10,2 карата был огранен из заготовки в 32,26 карата. А его автором стала компания из Санкт-Петербурга New Diamond Technology.
Недавно в прессу просочились сведения о том, что украинские ученые превзошли российских: им удалось получить искусственный алмаз весом аж в 109 карат. Подробности технологии пока не разглашаются, посему судить о правдивости этой истории сложно.
На данный момент лидерами в производстве искусственных алмазов являются компании из США, Японии и России. А на предприятиях Поднебесной ежегодно клепают миллиарды карат бриллиантов, но очень низкого качества, для технических нужд.
Название искусственных бриллиантов
Запомните: искусственный бриллиант называется… Да так он и называется: искусственный или синтетический бриллиант или алмаз. Могут существовать некоторые торговые наименования, но алмаз остается таковым по определению.
Искусственно выращенный бриллиант имеет такие же характеристики, как и природный прототип: он состоит из чистого углерода, столь же бескомпромиссно тверд, прозрачен, практически невосприимчив к агрессивным химикатам и так далее. Более того, он лишен изъянов, присущих природному собрату (трещин, пятен и иных дефектов).
Золотые серьги с жемчугом и бриллиантами (перейти в каталог SUNLIGHT)
Искусственный бриллиант – не имитация и не подделка, а минерал искусственного происхождения. Отличить его от природного алмаза не сможет даже ювелир, не располагающий оборудованием для спектрографии, а что говорить о простом обывателе?
Искусственные бриллианты тоже могут проходить сертификацию, но они оцениваются отдельно от природных собратьев. В частности, российский 10-каратный бриллиант был сертифицирован Международным геммологическим институтом (IGI) в Гонконге.
Обыватели, а зачастую – и продавцы некоторых ювелирных магазинов, зачастую называют искусственными бриллиантами всевозможные имитации. Но между понятиями «синтетический алмаз» и «имитация» лежит пропасть!
Фианит
В химическом плане фианит – это кубический цирконий. Фианит является разработкой советских ученых, пытавшихся получить камень, сходный с алмазом по оптическим свойствам, но куда менее дорогой.
Это у них получилось, и теперь фианиты используются как при производстве оптического оборудования, так и для изготовления бюджетных ювелирных изделий. Внешне они похожи на алмазы, но не обладают такой игрой цвета, гораздо мягче и со временем могут помутнеть. Зато стоят очень недорого!
Муассанит
Перед вами самый качественный и дорогой заменитель алмаза на современном рынке. Но тут наблюдается смешение понятий. Муассанит – минерал природного (скорее всего, космического) происхождения. Кристаллы его крайне невелики и в ювелирной промышленности не используются.
Зато искусственный аналог муассанита карборунд распространен гораздо шире. Именно он используется в качестве вставок в украшения. Карборунд приближается по твердости к алмазу (9,5 по шкале Мооса) и значительно опережает его по способности выдерживать нагревание. Он блестит даже ярче, чем бриллиант!
Лейкосапфир
Лейкосапфир – бесцветный корунд, который часто называют белым сапфиром. Белые сапфиры стоят значительно дешевле своих синих собратьев и часто выступают в роли «бриллиантов» в украшениях среднего ценового сегмента. Они практически не мутнеют, проявляют выдающуюся твердость и прозрачность – словом, весьма качественная и недешевая имитация.
Синтез корунда гораздо проще и дешевле, чем получение искусственного происхождения, поэтому ювелиры часто работают именно с лейкосапфирами искусственного происхождения.
Корунды – славное семейство, включающее не только сапфиры, но и рубины. Эти камни практически идентичны по свойствам и химическому составу, за исключением добавок, определяющих цвет.
Рутил
Рутил – один из самых дешевых и низкокачественных аналогов бриллианта. В химическом плане – это оксид титана, в физическом – природный мутный кристалл бурого цвета. Для ювелирных целей он малопригоден.
Однако в середине прошлого столетия рутил научились делать искусственно, причем придавая ему внешний вид бриллианта. На тот момент это было прорывом в ювелирной промышленности, и украшения с «титанией» или «радужным камнем» заполонили прилавки магазинов. Но искусственный рутил достаточно мягок и склонен к помутнению.
Стальные серьги в подарочной упаковке с кристаллами Swarovski (перейти в каталог SUNLIGHT)
Стразы
В эту группу входят разнообразные имитации бриллиантов, созданные на основе стекла. Обычную стекляшку сложно перепутать с благородным камнем, но ювелиру Георгу Страссу удалось приблизиться к идеалу хотя бы визуально. Он разработал технологию нанесения металлической пудры на поверхность стекла, что позволило получить эффектный «бриллиантовый» блеск.
Цена страз колеблется в широчайших пределах: от копеечной для безделушек китайского производства до весьма кусачей для знаменитых кристаллов Сваровски. Однако самый качественный страз даже близко не стоит к бриллианту, а царапается он практически как обычное стекло.
Стразы Swarovski имеют уникальный состав, поэтому так высоко ценятся в мире. Маэстро более века назад разработал технологию производства искусственного хрусталя, которая по сей день остается секретной и непревзойденной.
Из чего делают искусственные бриллианты
На данный момент известно несколько технологий производства искусственных бриллиантов. Однако одни очень сложны и дороги, другие не позволяют получить алмазы высокого качества.
Наиболее часто бриллианты делают из алмазов, полученных по следующим технологиям:
- HPHT. Технология HPHT (высокое давление, высокая температура) является классической и самой широко используемой в производстве – графитовые заготовки помещают в пресс и воздействуют на них катализаторами и высочайшей температурой. Практически все технические и львиная доля ювелирных алмазов изготовлены по этой технологии.
- CVD. В ходе химического процесса происходит осаждение углерода из газовой смеси на затравку, причем высокое давление не используется, что удешевляет процесс. Таким образом удается получать алмазные пленки достаточно большой площади. Однако чистые алмазы по этой технологии вырастить практически невозможно.
- Микровзрыв. В ходе направленных микровзрывов углеродистой взрывчатки получают алмазную пыль, которую впоследствии охлаждают и очищают от графита в азотной кислоте. Полученный продукт используют преимущественно для производства абразивных материалов.
- Воздействие ультразвука. Достаточно перспективная и недорогая технология, не требующая особых условий. На графитовую суспензию воздействуют ультразвуковой кавитацией, в результате получая кристаллы алмаза. Теоретические выкладки идеальны, производство обещает быть весьма недорогим, но вот беда: пока что алмазы, полученные таким образом, не отличаются высоким качеством, а стоимость процесса приближается к золотому стандарту, технологии HPHT.
Технология HPHT считалась исчерпавшей себя, пока не произошло чудо. Тот самый крупнейший питерский алмаз сделан именно по HPHT. Так что имеются все шансы на то, что испытанная временем технология выйдет на новый уровень.
Искусственно синтезируют не только традиционные бесцветные алмазы, но и их окрашенных собратьев. Добавление азота дарит алмазу лимонную желтизну, бор – пронзительный голубой цвет, облучение способно окрасить его в зеленый или красный цвет.
Где применяют синтетические алмазы?
Как говорилось выше, искусственный бриллиант отличается от настоящего лишь происхождением: со всех других точек зрения эти минералы идентичны. А это значит, что сфера применения искусственных алмазов точно такая же, как у природного камня.
Подавляющее большинство искусственных алмазов изготавливается целенаправленно для технических нужд. Они используются при производстве режущего инструмента и абразивов, электроники и оптических приборов, медицинского оборудования и буровых установок.
Золотое кольцо с бриллиантами (перейти в каталог SUNLIGHT)
Лучшие экземпляры, отличающиеся чистотой и достаточно крупными размерами, превращаются в бриллианты и украшают кольца, браслеты, кулоны, серьги, броши и прочую ювелирку.
Цена искусственных алмазов
Вопреки распространенному заблуждению, цена синтетического алмаза не так уж мала (если говорить о минералах ювелирного качества). На сегодняшний день рыночная цена синтетического бриллианта едва ли вполовину меньше, чем стоимость природного аналога с соответствующими характеристиками.
Например, в США традиционные помолвочные кольца с однокаратными искусственными бриллиантами дешевле аналогичных с природными камнями всего на треть. И их раскупают!
Наука не стоит на месте, просвещенная публика все больше склоняется в сторону синтетических бриллиантов – да здравствует тренд на экологичность! Так что в скором времени ожидается совершенствование технологий и получение искусственных бриллиантов превосходного качества по более низким ценам.
Однако вряд ли от этого подешевеют царственные природные камни, так что алмазодобытчики могут не волноваться: спрос на натуральные бриллианты не обнулится никогда!
Источник