Способы получения инфракрасного излучения

Инфракрасное излучение и его применение

Электромагнитное излучение с диапазоном длин волн от 0,74 мкм до 2 мм именуется в физике инфракрасным излучением или инфракрасными лучами, сокращенно «ИК». Оно занимает ту часть электромагнитного спектра, которая находится между видимым оптическим излучением (берущим начало в районе красного цвета) и коротковолновым радиодиапазоном.

Хотя практически инфракрасное излучение не воспринимается человеческим глазом как свет и не обладает каким-то определенным цветом, оно относится, тем не менее, к оптическому излучению, и находит самое широкое применение в современной технике.

Инфракрасные волны, что характерно, нагревают поверхности тел, поэтому инфракрасное излучение еще часто именуют тепловым излучением. Всю инфракрасную область принято условно делить на три части:

далекая ИК область — с длинами волн от 50 до 2000 мкм;

средняя ИК область — с длинами волн от 2,5 до 50 мкм;

ближняя ИК область — от 0,74 до 2,5 мкм.

ИК-излучение было открыто в 1800 году английским астрономом Уильямом Гершелем, а позже, в 1802 году, независимо от него, английским же ученым Уильямом Волластоном.

Спектры в ИК-диапазоне

Атомные спектры, получаемые в виде инфракрасных лучей, — линейчатые; спектры конденсированных сред — непрерывные; молекулярные спектры — полосатые. Суть в том, что для инфракрасных лучей, по сравнению с видимой и ультрафиолетовой областями электромагнитного спектра, оптические свойства веществ, такие как коэффициент отражения, пропускания, преломления, — сильно отличаются.

Многие из веществ хотя и пропускают видимый свет, при этом оказываются непрозрачными для волн части инфракрасного диапазона.

Так, например, слой воды в несколько сантиметров толщиной — непрозрачен для инфракрасной волны с длиной более 1 мкм, и в некоторых условиях может использоваться в качестве теплозащитного фильтра. А слои германия или кремния не пропускают видимый свет, зато хорошо пропускают инфракрасные лучи определенной длины волны. ИК-лучи дальней области черная бумага пропускает легко, и может служить фильтром для их выделения.

Большинство металлов, такие как алюминий, золото, серебро и медь, — отражают инфракрасное излучение с большей длиной волны, например при длине волны ИК-лучей в 10 мкм, отражение от металлов доходит до 98%. Твердые и жидкие вещества неметаллической природы отражают лишь часть диапазона ИК, в зависимости от химического состава конкретного вещества. В силу данных особенностей взаимодействия ИК-лучей с различными средами, они успешно используются во многих исследованиях.

Инфракрасные волны исходящие от Солнца, проходя через атмосферу Земли, частично рассеиваются и ослабляются на молекулах и атомах воздуха. Кислород и азот атмосферы частично ослабляют ИК-лучи, рассеивая их, но не поглощая полностью, как поглощают часть лучей видимого спектра.

Содержащиеся в атмосфере вода, углекислый газ и озон частично поглощают инфракрасные лучи, причем более всего поглощает их вода, так как ее спектры ИК-поглощения приходятся на всю область инфракрасного спектра, а спектры поглощения углекислого газа — попадают лишь на среднюю область.

Слои атмосферы вблизи поверхности Земли пропускают совсем небольшую долю ИК-излучения, так как дым, пыль и вода дополнительно ослабляют его, рассеивая энергию на своих частицах. Чем меньше частицы (дыма, пыли, воды и т.д.) — тем меньше рассеивание ИК и больше рассеивание волн видимого спектра. Данный эффект применяется в инфракрасной фотографии.

Для нас, живущих на Земле, очень мощным естественным источником инфракрасного излучения является Солнце, ведь половина его электромагнитного спектра приходится именно на инфракрасный диапазон. У ламп накаливания ИК-спектр составляет до 80% энергии излучения.

Также к искусственным источникам ИК-излучения относятся: электрическая дуга, газоразрядные лампы, и, конечно, бытовые обогреватели на ТЭНах. В науке для получения ИК-волн применяют штифт Нернста, вольфрамовые нити, а также ртутные лампы высокого давления и даже специальные ИК-лазеры (неодимовое стекло дает длину волны 1,06 мкм, а гелий-неоновый лазер — 1,15 и 3,39 мкм, углекислый газ — 10,6 мкм).

Читайте также:  Переводчик словообразование способ словообразования

Принцип работы приемников ИК-волн основывается на преобразовании энергии падающего излучения в другие виды энергии, доступные для измерения и использования. Поглощаемое в приемнике, ИК-излучение разогревает термочувствительный элемент, и повышение температуры регистрируется.

Фотоэлектрические приемники ИК-лучей генерируют электрическое напряжение и ток, реагируя на определенную узкую часть ИК-спектра, для работы с которой они предназначены, то есть фотоэлектрические ИК-приемники селективны. Для ИК-волн из диапазона до 1,2 мкм фоторегистрацию осуществляют при помощи специальных фотоэмульсий.

Очень широкое применение находит инфракрасное излучение в науке и технике, особенно для решения практических исследовательских задач. Исследуются спектры поглощения и испускания молекул и твердых тел, которые как раз приходятся на инфракрасную область.

Данный подход к исследованиям называется инфракрасной спектроскопией, позволяющей решать структурные задачи, проводя количественный и качественный спектральный анализ. На далекую ИК-область приходятся излучения, вызываемые переходами между подуровнями атомов. Благодаря ИК-спектрам можно изучать структуры электронных оболочек атомов.

И это не говоря о фотографии, когда один и тот же объект, будучи сфотографирован сначала в видимом, а затем — в инфракрасном диапазоне, будет выглядеть по разному, так как из-за различия в коэффициентах пропускания, рассеяния и отражения для разных областей электромагнитного спектра, некоторые элементы и детали в необычном режиме фотосъемки могут вообще отсутствовать: на обычной фотографии кое-что будет отсутствовать, а на ИК-фото — станет видимым.

Нельзя недооценить промышленное и бытовое использование инфракрасного излучения. Его применяют для сушки и нагрева различных изделий и материалов на производствах. В домах — обогревают помещения.

Электронно-оптические преобразователи используют фотокатоды, чувствительные в инфракрасной области электромагнитного спектра, что позволяет видеть то, что невидимо невооруженным глазом.

Приборы ночного видения позволяют видеть в темноте благодаря облучению объектов ИК-лучами, ИК-бинокли — вести наблюдение ночью, ИК-прицелы — вести прицеливание в полной темноте и т. д. Кстати, с помощью инфракрасного излучения можно воспроизвести точный эталон метра.

Приемники ИК-волн повышенной чувствительности позволяют вести пеленгацию различных объектов по их тепловому излучению, так например работают системы самонаведения ракет, которые дополнительно генерируют собственное ИК-излучение.

Дальномеры и локаторы на основе ИК-лучей дают возможность наблюдать некоторые предметы в темноте, и измерять расстояние до них с высокой точностью. ИК-лазеры используются в научных исследованиях, для зондирования атмосферы, для осуществления космической связи и т.д.

Источник

Способ получения ик-излучения

Использование: в источниках света, излучающих в ИК-области спектра. Сущность изобретения: формируют газовый разряд в атмосфере ксенона при сверхвысоком давлении, температуру разряда повышают путем формирования катодного пятна при токе 150 — 200 А. ИК-излучение катодного пятна пропускают через окно из материала с коэффициентом пропускания >0 при >2.5мкм. Материал катода выбирают с работой выхода не менее 3 эВ и охлаждают катод до температуры его рабочей поверхности, не превышающей 1273 К. 1 табл.

Изобретение относится к светотехнике, а именно к источникам излучения в ИК-области спектра.

Известен способ получения ИК-излучения, включающий формирование газового разряда на воздухе между двумя угольными электродами [1] .

Недостатком этого способа является низкая интенсивность ИК-излучения, обусловленная температурой в кратере анодного угля, не превышающей 3800 К.

Известен способ получения ИК-излучения, включающий формирование газового разряда в атмосфере ксенона при сверхвысоком давлении в баллоне из кварцевого стекла [2] .

Недостатком этого способа является низкая интенсивность излучения в длинноволновой ( 2,5 мкм) области спектра, обусловленный отсутствием пропускания кварцевым стеклом излучения с 2,5 мкм и относительно низкой температурой разряда (6000 К).

Целью предложенного способа является повышение интенсивности ИК-излучения при 2,5 мкм.

Цель достигается в способе получения ИК-излучения, включающем формирование газового разряда в баллоне в атмосфере ксенона при сверхвысоком давлении, тем, что повышают температуру разряда путем формирования катодного пятна при токе 150-200 А, пропускают ИК-излучение катодного пятна через окно из материала с коэффициентом пропускания > 0 при 2,5 мкм, при этом материал катода выбирают с работой выхода менее 3 эВ и охлаждают катод до температуры его рабочей поверхности, не превышающей 1273 К.

Читайте также:  Млн способов потерять голову

Для изготовления катода брали чистый вольфрам с работой выхода 4,6 эВ, охлаждали его с помощью воды до температуры его рабочей поверхности 1073 К, формировали газовый разряд в лампе в атмосфере ксенона при рабочем давлении 21 атм и токе 150 А. При этом на рабочей поверхности катода получали катодное пятно с температурой разряда 10000 К. Затем излучение катодного пятна пропускали через окно из специальной керамики с коэффициентом пропускания = 0,8 при 2,5 мкм.

Как показали анализ и обобщение проведенных экспериментальных исследований, поставленная цель достигается только при одновременном осуществлении всех существенных признаков. Это подтверждается вариантами примеров практического выполнения заявленного способа, которые приведены в таблице 1. Интенсивность излучения определяли по энергетической яркости в относительных единицах (В отн. ). Анализ таблицы показывает следующее.

При использовании материала катода с работой выхода менее 3 эВ катодное пятно не удается сформировать даже при температуре катода 1173 K и токе 150 А, поэтому удается увеличить интенсивность излучения при 2,5 мкм по сравнению с прототипом только за счет пропускания излучения окном из специальных материалов; использование материала катода с работой выхода 3 эВ при токе 150 А приводит к появлению катодного пятна малых размеров, поэтому интенсивность излучения в сравнении с первым вариантом примера увеличивается только в 1,3 раза; использование материала катода с работой выхода более 3 эВ позволяет сформировать устойчивое катодное пятно, размеры которого зависят от тока в диапазоне 150-200 А. В этом случае интенсивность ИК-излучения увеличивается многократно (в 8-10 раз) по сравнению с первым вариантом примера; при токе более 200 А не удается за счет охлаждения снизить температуру катода до величин, не превышающих 1273 К, поэтому разряд переходит в режим работы без катодного пятна и интенсивность излучения соответствует таковой при температуре разряда 6000 K.

Использование предложенного способа по сравнению с существующими позволяет многократно повысить интенсивность ИК-излучения при 2,5 мкм. (56) Усольцев И. Ф. Основы инфракрасной техники. — М. : 1987, с. 35-38.

Рохлин Г. Н. Газоразрядные источники света. — М. -Л. : Энергия, 1966, с. 449-469 (прототип).

СПОСОБ ПОЛУЧЕНИЯ ИК-ИЗЛУЧЕНИЯ, включающий формирование газового разряда в баллоне в атмосфере ксенона при сверхвысоком давлении, отличающийся тем, что повышают температуру разряда путем формирования катодного пятна при токе 150 — 200 А, пропускают ИК-излучение катодного пятна через окно из материала с коэффициентом пропускания >0 пpи 2,5 мкм, при этом материал катода выбирают с работой выхода не менее 3 эВ и охлаждают катод до температуры его рабочей поверхности, не превышающей 1273К.

Источник

способ получения инфракрасного излучения

Изобретение относится к области электротехники и оптики и касается способа получения инфракрасного излучения. Для получения инфракрасного излучения электрический сигнал подают на вход блока предыскажений. Блок предыскажений изменяет форму сигнала путем извлечения из него корня восьмой степени. Измененный сигнал затем подается на вход источника инфракрасного излучения. Технический результат заключается в упрощении и ускорении обработки сигнала. 3 ил.

Формула изобретения

Способ получения инфракрасного излучения, характеризующийся подачей сигнала на вход источника инфракрасного излучения, измерением параметров сигнала, снятого с выхода источника инфракрасного излучения, отличающийся тем, что перед подачей сигнала на вход источника инфракрасного излучения сигнал подают на вход блока предыскажений, обеспечивающего изменение формы сигнала путем извлечения из него корня восьмой степени с последующими снятием сигнала с выхода блока предыскажений и подачей сигнала измененной формы на вход источника инфракрасного излучения.

Описание изобретения к патенту

Изобретение относится к электротехнике, в частности к преобразовательной технике, и может найти применение в преобразователях электрических сигналов в инфракрасное излучение, в частности в приборах, широко используемых, например, при различных измерениях в медицинской технике.

Известен прибор — газоанализатор дыхательной смеси, содержащий источник инфракрасного излучения, обеспечивающий подачу на вход сигнала и снятие его с выхода источника [Л.1, 2].

Способ получения инфракрасного излучения посредством описанного в [Л.1, 2] прибора заключается в подаче сигнала на вход источника инфракрасного излучения, снятии с выхода этого источника сигнала, измерении параметров этого сигнала и последующей его обработке.

Описанный выше способ получения инфракрасного излучения обеспечивает снятие инфракрасного сигнала прямоугольной формы, последующая обработка которого связана со значительными материальными и временными затратами.

Изобретением решается задача создания способа получения инфракрасного излучения, характеризующегося более широкими функциональными возможностями благодаря получению на выходе сигнала синусоидальной формы, являющегося довольно простым в обработке.

Для решения поставленной задачи в способе получения инфракрасного излучения, характеризующемся подачей сигнала на вход источника инфракрасного излучения, измерением параметров сигнала, снятого с выхода источника инфракрасного излучения, и последующей его обработкой, предложено согласно настоящему изобретению перед подачей сигнала на вход источника инфракрасного излучения сигнал подавать на вход блока предыскажений, обеспечивающего изменение формы сигнала путем извлечения из него корня восьмой степени, затем снимать сигнал с выхода блока предыскажений и подавать сигнал измененной формы на вход источника инфракрасного излучения.

Изобретение поясняется на примере выполнения чертежами, на которых представлены: на фиг.1 — функциональная схема устройства, реализующего заявляемый способ; на фиг.2 — форма сигнала, снимаемого с выхода источника инфракрасного излучения; на фиг.3 — форма сигнала, снимаемого с выхода модуля предыскажений.

Устройство, реализующее заявляемый способ, содержит генератор 1 синусоидального сигнала, блок 2 предыскажений, источник 3 инфракрасного излучения.

Суть заявляемого способа состоит в следующем.

Сигнал подают на вход генератора 1 синусоидального сигнала.

Затем с выхода генератора 1 синусоидального сигнала снимают сигнал, подают его на вход блока 2 предыскажений, в котором сигнал видоизменяется путем извлечения корня восьмой степени, и видоизмененный сигнал подают на вход источника 3 инфракрасного излучения, который впоследствии снимают с выхода источника инфракрасного излучения.

Снимаемый с выхода источника 3 инфракрасного излучения сигнал имеет синусоидальную форму и легко поддается всевозможным преобразованиям.

На фиг.2 представлена форма сигнала, снимаемого с выхода источника инфракрасного излучения, а именно по оси абцисс отложено время в миллисекундах, по оси ординат — значение тока на входе источника инфракрасного излучения.

На фиг.3 представлена форма сигнала, снимаемого с выхода модуля предыскажений, а именно зависимость интенсивности излучения от времени: по оси абцисс отложено время в миллисекундах, по оси ординат — интенсивность излучения в условных единицах. В данном случае зависимость тока или напряжения от времени будет иметь аналогичный характер.

Из представленных на фиг.2 и 3 характеристик следует, что получаемый на выходе источника инфракрасного излучения сигнал имеет синусоидальную форму.

Сигнал, имеющий синусоидальную форму, характеризуется простотой в обработке, так как не требует наличия в тракте измерений постоянной составляющей, что необходимо при наличии сигнала, имеющего прямоугольную форму.

В соответствии с заявляемым решением в ООО фирма «Тритон-ЭлектроникС» разработана техническая документация прибора — модуля газоанализа газовой смеси в составе монитора пациента модульного МПР-7, реализующего заявляемый способ получения инфракрасного излучения, на основании которой изготовлен указанный прибор. Анализ его технических характеристик позволил сделать вывод о его существенном превосходстве над выпускаемыми различными предприятиями аналогичными изделиями. При этом процесс эксплуатации этого прибора позволил сделать вывод о работоспособности заявляемого способа и широком практическом его применении в будущем.

1. Газоанализатор дыхательной смеси Artema AION, выпускаемый фирмой Artema Medical АВ, Швеция. С 2001 года.

2. Size Matters: The World s Smallest Intrared Gos Analyzers; MSP Industry Alent; Medical Strategic Planning, Inc, vol.8, № 2, September, 2006.

Источник

Читайте также:  Быстрая засолка волнушек холодным способом
Оцените статью
Разные способы
Классы МПК: G02F1/00 Устройства или приспособления для управления интенсивностью, цветом, фазой, поляризацией или направлением света, исходящего от независимого источника, например для переключения, стробирования или модуляции; нелинейная оптика
G01J1/00 Фотометрия, например фотографические экспозиметры
Автор(ы): Рыбаков Михаил Владимирович (RU)
Патентообладатель(и): Общество с ограниченной ответственностью фирма «Тритон-ЭлектроникС» (RU)
Приоритеты: