Способы получения фтора уравнение

Получение фтора

Нахождение в природе. История получения фтора

Фтор – распространенный элемент в природе, содержание фтора в земной коре составляет » 0,06 мас. %. В свободном состоянии фтор не встречается. Важнейшими минералами, содержащими фтор, являются CaF2 – флюорит (плавиковый шпат) (Прибайкалье), Na3AlF6 – криолит, 3Са3(PO4)2 × CaF2 – фторапатит (Кольский полуосторов).

История открытия фтора связана с минералом флюоритом (плавиковым шпатом) CaF2. В давние времена флюорит использовался в металлургии для понижения температуры плавления руды и шлаков.

В 1771 году обработкой флюорита серной кислотой шведский химик Карл Шееле приготовил кислоту, которую он назвал «плавиковой»:

Французский ученый Антуан Лавуазье предположил, что в состав этой кислоты входит новый химический элемент, который он предложил назвать «флюорем», что в переводе означает «текущий» (Лавуазье считал, что плавиковая кислота – это соединение флюория с кислородом, ведь, по мнению Лавуазье, все кислоты должны содержать кислород). Однако выделить новый элемент он не смог. За новым элементом укрепилось название «флюор».

Длительные попытки выделить этот элемент в свободном виде не привели к успеху. Многие ученые, пытавшиеся получить его в свободном виде, погибли при проведении таких опытов или стали инвалидами. Это и английские химики братья Т. и Г. Ноксы, и французы Жозеф-Луи Гей-Люссак и Луи Жак Тенар, и многие другие. Сам Гемфри Дэви, первым получивший в свободном виде натрий, калий, кальций и другие элементы, в результате экспериментов по получению фтора электролизом отравился и тяжело заболел.

Читайте также:  Какие есть способы заниматься спортом

В 1816 году для нового элемента было предложено другое название – фтор (от греч. phtoros – разрушение, гибель). Это название элемента принято только в русском языке, французы и немцы продолжают называть фтор fluor, англичане –fluorine. Получить фтор в свободном виде не смог и такой выдающийся ученый, как Майкл Фарадей.

Только в 1886 году французский химик Анри Муассан, используя электролиз жидкого фтороводорода HF, охлажденного до температуры – 23°C (в жидкости должно содержаться немного фторида калия KF, который обеспечивает ее электропроводимость), смог на аноде получить первую порцию нового, чрезвычайно реакционноспособного газа. В первых опытах для получения фтора Муассан использовал очень дорогой электролизер, изготовленный из платины (Pt) и иридия (Ir). При этом каждый грамм полученного фтора «съедал» до 6 г платины. Позднее Муассан стал использовать значительно более дешевый медный электролизер.

1. Фтор получают электролизом расплава KF × HF (при 250 ºС) или KF × 2HF (при 100 ºС). Процесс электролиза проводят в медных, никелевых или стальных электролизерах, катоды – медные или стальные, аноды – угольные (данные материалы не разрушаются фтором при температуре электролиза). Стенки электролизера покрываются плотной пленкой фторида, препятствующей коррозии. Для предотвращения взрыва при взаимодействии фтора с выделяющимся водородом в электролизере установлен стальной цилиндр, разделяющий катодное и анодное пространство (рис. 1).

Рис. 1. Схема электролизера для получения фтора

Электролизу подвергается HF, а KF обеспечивает электрическую проводимость расплава:

2. В лабораторных условиях фтор получают разложением высших фторидов металлов (церия, марганца):

, где Ме = Ce, Mn

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

§ 1. Фтор

Получение фтора осуществляется путем электролиза фтористых соединений, причем фтор выделяется на аноде по схеме:

Электролитом обычно служит легкоплавкая смесь состава KF × 2HF. Процесс проводят при температурах около 100 °С в стальных электролизерах со стальными катодами (на которых выделяется водород) и угольными анодами.

Свободный фтор состоит из двухатомных молекул и представляет собой почти бесцветный (в толстых слоях зеленовато–желтый) газ, имеющий резкий запах. Он сгущается в желтоватую жидкость при –188 °С и затвердевает при –218 °С. Распад молекулы F2 на отдельные атомы осуществляется довольно легко (энергия диссоциации 38 ккал/моль).

С химической стороны фтор может быть охарактеризован как одновалентный металлоид и притом самый активный из всех металлоидов. Обусловлено это благоприятным сочетанием ряда факторов – непрочности молекулы F2 , сравнительно малых размеров атома фтора и тем, что он имеет большое сродство к электрону, т. е. энергично притягивает недостающий ему для заполнения внешнего слоя валентный электрон:

Это число –82 ккал/г–атом – и является количественным выражением сродства фтора к электрону.

Подавляющее большинство металлов соединяется с фтором уже при обычных условиях. Однако взаимодействие часто ограничивается образованием поверхностной пленки фтористого соединения, которая предохраняет металл от дальнейшего разъедания.

Так как фтористые производные металлоидных элементов обычно легколетучи, образование их не предохраняет поверхность металлоида от дальнейшего действия фтора. Поэтому взаимодействие с металлоидами часто протекает значительно энергичнее, чем со многими металлами. Например, фосфор и сера воспламеняются в газообразном фторе и сгорают по реакциям:

С азотом и кислородом фтор непосредственно не соединяется.

От водородных соединений других элементов фтор отнимает водород. Большинство окислов разлагается им с вытеснением кислорода, В частности, вода разлагается по схеме

причем вытесняемые атомы кислорода соединяются не только друг с другом, но отчасти также с молекулами воды и фтора. Поэтому, помимо газообразного кислорода, при этой реакции всегда образуются также перекись водорода и окись фтора (F2 O). Последняя представляет собой бесцветный газ, похожий по запаху на озон.

1) Окись фтора (иначе – фтористый кислород – OF2 ) может быть получена по реакции:

Она малорастворима в воде и почти не разлагается ею, но под действием сильных восстановителей разложение F2 O (т. пл. –224 °С, т. кип. –145 °С) идет довольно быстро. Окись фтора сильно ядовита.

Практическое использование фтора широко развилось за последние годы. Потребляется он главным образом для фторирования органических соединений (т. е. замены в них водорода на фтор). Процесс этот приобрел большое значение, так как многие фторорганические производные обладают ценными свойствами.

В отличие от свободного фтора, фтористый водород (HF) и многие его производные использовались уже с давних пор.

Непосредственное соединение фтора с водородом сопровождается очень большим выделением тепла:

Реакция протекает обычно со взрывом, который происходит даже при сильном охлаждении газов и в темноте. Практического значения для получения HF этот прямой синтез не имеет.

Техническое получение фтористого водорода основано на взаимодействии СаF2 с концентрированной H2 SO4 по реакции:

Процесс проводят в стальных печах при 120–300°С. Части установки, служащие для поглощения HF, делаются из свинца.

Фтористый водород представляет собой бесцветную легколетучую жидкость (т. пл. – 83°С. т. кип, +19,5 °С), смешивающуюся с водой в любых соотношениях. Он обладает резким запахом, дымит на воздухе (вследствие образования с парами воды мелких капелек раствора) и сильно раздражает дыхательные пути.

2) Связь Н–F характеризуется весьма высокой полярностью (0,45). Этим обусловлена резко выраженная склонность фтористого водорода к ассоциации путем образования водородных связей по схеме [···H···F···H···F···].

Энергия такой связи составляет около 7 ккал/г–атом, т. е. она несколько прочнее, чем водородная связь между молекулами воды.

Химические свойства HF существенно зависят от отсутствия или наличия воды. Сухой фтористый водород не действует на большинство металлов. Не реагирует он и с окислами металлов. Однако если реакция начнется, то дальше она некоторое время идет с самоускорением, так как в результате взаимодействия по схеме

Подобным же образом действует фтористый водород и на окислы некоторых металлоидов. Практически важно взаимодействие его с двуокисью кремния – SiO2 (песок, кварц), так как последняя входит в состав стекла. Реакция идет по схеме

Поэтому фтористый водород нельзя получать и сохранять в стеклянных сосудах. Обычно его растворы хранят в бутылях из искусственных пластмасс, на которые HF не действует.

На взаимодействии HF с SiO2 основано применение фтористого водорода для «травления» стекла. Вследствие удаления частичек SiO2 поверхность его становится матовой, чем пользуются для нанесения на стекло различных надписей и т.п.

3) Рассмотренные выше случаи взаимодействия сухого фтористого водорода с окислами металлов и металлоидов могут служить типичным примером аутокаталитических реакций, т. е. таких процессов, при которых катализатор (в данном случае – вода) не вводится в систему извне, а является одним из продуктов реакции. Как показывает рис. 95, скорость подобных процессов сначала, по мере увеличения в системе количества катализатора, нарастает до некоторого максимума, после чего начинает уменьшаться вследствие понижения концентраций реагирующих веществ.

В водном растворе HF ведет себя, как одноосновная кислота средней силы. Продажный раствор этой фтористоводородной (иначе, плавиковой) кислоты содержит обычно 40% HF.

Фтористоводородная кислота более или менее энергично реагирует с большинством металлов. Однако во многих случаях реакция протекает лишь на поверхности металла, после чего последний оказывается защищенным от дальнейшего действия кислоты слоем образовавшейся труднорастворимой соли. Так ведет себя, в частности, свинец, что и позволяет пользоваться им для изготовления частей устойчивой к действию HF аппаратуры.

4) Помимо электролитической диссоциации по уравнению HF H · + F · (K = 710 – 4 ), для плавиковой кислоты характерно равновесие: F’ + HF HF2 . Значение константы этого равновесия [HF’2 ]/[F’][HF] = 5 показывает, что в растворах HF содержится больше сложных анионов (FHF)’ [имеющих линейную структуру с d(FF) = 2,3 А], чем простых анионов F’.

Соли фтористоводородной кислоты носят название фтористых или фторидов. Большинство их трудно растворимо в воде – из производных обычных металлов хорошо растворяются лишь фториды Na, К, Ag, Al, Sn и Hg. Все соли плавиковой кислоты ядовиты. Сама она при попадании на кожу вызывает образование болезненных и трудно заживающих ожогов (особенно под ногтями). Поэтому работать с ней следует в резиновых перчатках.

Практическое применение плавиковой кислоты довольно разнообразно. Она используется в нефтяной промышленности (при синтезе высококачественных бензинов), для удаления песка с металлического литья, при анализах минералов и т. д. Широкое практическое применение находят также некоторые фториды, которые будут ближе рассмотрены при соответствующих элементах.

Источник

Галогены. Химия галогенов и их соединений

Галогены

Положение в периодической системе химических элементов

Галогены расположены в главной подгруппе VII группы (или в 17 группе в современной форме ПСХЭ) периодической системы химических элементов Д.И. Менделеева.

Электронное строение галогенов

Электронная конфигурация галогенов в основном состоянии соответствует формуле ns 2 np 5 .

Например , электронная конфигурация фтора :

Электронная концигурация хлора :

Атомы галогенов содержат на внешнем энергетическом уровне 1 неспаренный электрон и три неподеленные электронные пары в основном энергетическом состоянии. Следовательно, в основном состоянии атомы галогенов могут образовывать 1 связи по обменному механизму.

При этом у фтора возбужденного состояния нет, т.е. максимальная валентность фтора в соединения равна I.

Однако, в отличие от фтора, за счет вакантной d-орбитали атомы хлора, брома и йода могут переходить в возбужденное энергетическое состояние.

Таким образом, максимальная валентность галогенов (кроме фтора) в соединениях равна VII. Также для галогенов характерны валентности I, III, V.

Степени окисления атома галогенов – от -1 до +7. Характерные степени окисления -1, 0, +1, +3, +5, +7. Для фтора характерная степень окисления -1 и валентность I.

Физические свойства и закономерности изменения свойств

Галогены образуют двухатомные молекулы состава Hal2. В твёрдом состоянии имеют молекулярную кристаллическую решетку. Плохо растворимы в воде, все имеют запах, летучи.

Галоген F Cl Br I
Электронная формула … 2s 2 2p 5 … 3s 2 3p 5 … 4s 2 4p 5 … 5s 2 5p 5
Электроотрицательность 4,0 3,0 2,8 2,5
Степени окисления -1 -1, +1, +3, +5, +7 -1, +1, +3, +5, +7 -1, +1, +3, +5, +7
Агрегатное состояние Газ Газ Жидкость Твердые кристаллы
Цвет Светло-желтый Жёлто-зелёный Буровато-коричневый Тёмно-серый с металлическим блеском
Запах Резкий Резкий, удушливый Резкий, зловонный Резкий
T плавления –220 о С –101 о С –7 о С 113,5 о С
Т кипения –188 о С –34 о С 58 о С 185 о С

Внешний вид галогенов:

Фтор

Хлор

Бром

Йод

В природе галогены встречаются в виде соединений, в основном, в виде галогенидов.

Соединения галогенов

Типичные соединения хлора:

Степень окисления Типичные соединения
+7 Хлорная кислота HClO4

Перхлораты MeClO4

+5 Хлорноватая кислота HClO3

Хлораты MeClO3

+3 Хлористая кислота HClO2
+1 Хлорноватистая кислота HClO

Гипохлориты MeClO

–1 Хлороводород HCl, Хлориды MeCl

Бром и йод образуют подобные соединения.

Способы получения галогенов

1. Получение хлора.

В промышленности хлор получают электролизом расплава или раствора хлорида натрия.

Электролиз расплава хлорида натрия.

В расплаве хлорид натрия диссоциирует на ионы:

NaCl → Na + + Cl

На катоде восстанавливаются ионы натрия:

K(–): Na + +1e → Na 0

На аноде окисляются ионы хлора:

A(+): 2Cl − ̶ 2e → Cl2 0

Ионное уравнение электролиза расплава хлорида натрия:

2Na + + 2Cl − → 2Na º + Cl2º

Суммарное уравнение электролиза расплава хлорида натрия:

2NaCl → 2Na + Cl2

Электролиз раствора хлорида натрия.

В растворе хлорид натрия диссоциирует на ионы:

NaCl → Na + + Cl

На катоде восстанавливаются молекулы воды:

K(–): 2H2O + 2e → H2° + 2OH −

На аноде окисляются ионы хлора:

A(+): 2Cl − ̶ 2e → Cl2 0

Ионное уравнение электролиза раствора хлорида натрия:

Суммарное уравнение электролиза раствора хлорида натрия:

2NaCl + 2H2O → H2↑ + 2NaOH + Cl2

В лаборатории хлор получают взаимодействием концентрированной соляной кислоты с сильными окислителями.

Например , взаимодействием соляной кислоты с оксидом марганца (IV)

Или перманганатом калия:

2KMnO4 + 16HCl → 2MnCl2 + 2KCl + 5Cl2↑ + 8H2O

Бертолетова соль также окисляет соляную кислоту:

KClO3 + 6HCl → KCl + 3Cl2↑ + 3H2O

Бихромат калия окисляет соляную кислоту:

2. Получение фтора.

Фтор получают электролизом расплава гидрофторида калия.

3. Получение брома.

Бром можно получить окислением ионов Br – сильными окислителями.

Например , бромоводород окисляется хлором:

2HBr + Cl2 → Br2 + 2HCl

Соединения марганца также окисляют бромид-ионы.

Например , оксид марганца (IV):

4. Получение йода.

Йод получают окислением ионов I – сильными окислителями.

Например , хлор окисляет йодид калия:

2KI + Cl2 → I2 + 2KCl

Соединения марганца также окисляют йодид-ионы.

Например , оксид марганца (IV) в кислой среде окисляет йодид калия:

Химические свойства галогенов

Химическая активность галогенов увеличивается снизу вверх – от астата к фтору.

1. Галогены проявляют свойства окислителей . Галогены реагируют с металлами и неметаллами .

1.1. Галогены не горят на воздухе. Фтор окисляет кислород с образованием фторида кислорода:

1.2. При взаимодействии галогенов с серой образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с галогенами образуются галогениды фосфора и углерода:

1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.

Например , железо реагирует с галогенами с образованием галогенидов. При этом фтор, хлор и бром образуются галогениды железа (III), а c йодом — соединение железа (II):

3Cl2 + 2Fe → 2FeCl3

Аналогичная ситуация с медью : фтор, хлор и бром окисляют медь до галогенидов меди (II),а йод до йодида меди (I):

I2 + 2Cu → 2CuI

Активные металлы бурно реагируют с галогенами, особенно с фтором и хлором (горят в атмосфере фтора или хлора).

Еще пример : алюминий взаимодействует с хлором с образованием хлорида алюминия:

3Cl2 + 2Al → 2AlCl3

1.5. Водород горит в атмосфере фтора:

С хлором водород реагирует только при нагревании или освещении. При этом реакция протекает со взрывом:

Бром также реагирует с водородом с образованием бромоводорода:

Взаимодействие йода с водородом происходит только при сильном нагревании, реакция протекает обратимо, с поглощением теплоты (эндотермическая):

1.6. Галогены реагируют с галогенами. Более активные галогены окисляют менее активные.

Например , фтор окисляет хлор, бром и йод:

2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно диспропорционируют при растворении в воде или в щелочах.

2.1. При растворении в воде хлор и бром частично диспропорционируют, повышая и понижая степень окисления. Фтор окисляет воду.

Например , хлор при растворении в холодной воде диспропорционирует до ближайших стабильных степеней окисления (+1 и -1), образует при этом соляную кислоту и хлорноватистую кислоту (хлорная вода):

Cl2 + H2O ↔ HCl + HClO

При растворении в горячей воде хлор диспропорционирует до степеней окисления -1 и +5, образуя соляную кислоту и хлорную кислоту:

Фтор реагирует с водой со взрывом:

2.2. При растворении в щелочах хлор, бром и йод диспропорционируют с образованием различных солей. Фтор окисляет щелочи.

Например , хлор реагирует с холодным раствором гидроксидом натрия:

При взаимодействии с горячим раствором гидроксида натрия образуются хлорид и хлорат:

Еще пример : хлор растворяется в холодном растворе гидроксида кальция:

2.3. Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов.

Например , хлор вытесняет йод и бром из раствора йодида калия и бромида калия соответственно:

Cl2 + 2NaI → 2NaCl + I2

Cl2 + 2NaBr → 2NaCl + Br2

Еще одно свойство: более активные галогены окисляют менее активные.

Например , фтор окисляет хлор с образованием фторида хлора (I):

Cl2 + F2 → 2Cl + F –

В свою очередь, хлор окисляет йод. При этом в растворе образуется соляная кислота и йодная кислота:

2.4. Галогены проявляют окислительные свойства, взаимодействуют с восстановителями.

Например , хлор окисляет сероводород:

Cl2 + H2S → S + 2HCl

Хлор также окисляет сульфиты:

Также галогены окисляют пероксиды:

Или, при нагревании или на свету, воду:

2Cl2 + 2H2O → 4HCl + O2 (на свету или кип.)

Галогеноводороды

Строение молекулы и физические свойства

Галогеноводороды HHal – это бинарные соединения водорода с галогенами, которые относятся к летучим водородным соединениям. Галогеноводороды – бесцветные ядовитый газы, с резким запахом, хорошо растворимые в воде.

В ряду HCl – HBr – HI увеличивается длина связи и ковалентности связи уменьшается полярность связи H – Hal.

Растворы галогеноводородов в воде (за исключением фтороводорода) – сильные кислоты. Водный раствор фтороводорода – слабая кислота.

Способы получения галогеноводородов

В лаборатории галогеноводороды получают действием нелетучих кислот на хлориды металлов.

Например , действием концентрированной серной кислоты на хлорид натрия:

Галогеноводороды получают также прямым взаимодействием простых веществ:

Химические свойства галогеноводородов

1. В водном растворе галогеноводороды проявляют кислотные свойства . Взаимодействуют с основаниями, основными оксидами, амфотерными гидроксидами, амфотерными оксидами . Кислотные свойства в ряду HF – HCl – HBr – HI возрастают.

Например , хлороводород реагирует с оксидом кальция, оксидом алюминия, гидроксидом натрия, гидроксидом меди (II), гидроксидом цинка (II), аммиаком:

2HCl + CaO → CaCl2 + H2O

HCl + NaOH → NaCl + H2O

Как типичные минеральные кислоты, водные растворы галогеноводородов реагируют с металлами , расположенными в ряду активности металлов до водорода. При этом образуются соль металла и водород.

Например , соляная кислота растворяет железо. При этом образуется водород и хлорид железа (II):

Fe + 2HCl → FeCl2 + H2

2. В водном растворе галогеноводороды диссоциируют , образуя кислоты. Водный раствор фтороводорода (плавиковая кислота) – слабая кислота:

HF ↔ H + + F –

Водные растворы хлороводорода (соляная кислота), бромоводорода и йодоводорода – сильные кислоты, в разбавленном растворе диссоциируют практически полностью:

HCl ↔ H + + Cl –

3. Водные растворы галогеноводородов взаимодействуют с солями более слабых кислот и с некоторыми растворимыми солями (если образуется газ, осадок, вода или слабый электролит).

Например , соляная кислота реагирует с карбонатом кальция:

Качественная реакция на галогенид-ионы – взаимодействие с растворимыми солями серебра.

При взаимодействии соляной кислоты с нитратом серебра (I) образуется белый осадок хлорида серебра:

HCl + AgNO3 = AgCl↓ + HNO3

Осадок бромида серебра – бледно-желтого цвета:

HBr + AgNO3 = AgBr↓ + HNO3

Осадок иодида серебра – желтого цвета:

HI + AgNO3 = AgI↓ + HNO3

Фторид серебра – растворимая соль, поэтому реакция плавиковой кислоты и ее солей с нитратом серебра не является качественной.

Видеоопыты качественных реакций на хлорид-, бромид- и йодид-ионы (взаимодействие с нитратом серебра) можно посмотреть здесь.

4. Восстановительные свойства галогеноводородов усиливаются в ряду HF – HCl – HBr – HI.

Галогеноводороды реагируют с галогенами . При этом более активные галогены вытесняют менее активные.

Например , бром вытесняет йод из йодоводорода:

Br2 + 2HI → I2 + 2HBr

А вот хлор не может вытеснить фтор из фтороводорода.

Фтороводород практически невозможно окислить.

Концентрированная соляная кислота окисляется соединениями марганца с валетностью выше II или соединениями хрома (VI).

Например : концентрированная соляная кислота окисляется оксидом марганца (IV):

Бромоводород – сильный восстановитель и окисляется соединениями марганца, хрома (VI), концентрированной серной кислотой и другими сильными окислителями:

Например , бромоводород окисляется концентрированной серной кислотой:

Бромоводород реагирует с бихроматом калия с образованием молекулярного брома:

Или с оксидом марганца (IV):

Пероксид водорода также окисляет бромоводород до молекулярного брома:

Йодоводород – еще более сильный восстановитель, и окисляется другими неметаллами и даже такими окислителями, как соединения железа (III) и соединения меди (II).

Например , йодоводород реагирует с хлоридом железа (III) с образованием молекулярного йода:

2HI + 2FeCl3 → I2 + 2FeCl2 + 2HCl

или с сульфатом железа (III):

Йодоводород легко окисляется соединениями азота, например , оксидом азота (IV):

или молекулярной серой при нагревании:

2HI + S → I2 + H2S

5. Плавиковая кислота реагирует с оксидом кремния (IV) (растворяет стекло):

Галогениды металлов

Галогениды – это бинарные соединения галогенов и металлов или некоторых неметаллов, соли галогеноводородов.

Способы получения галогенидов

1. Галогениды металлов получают при взаимодействии галогенов с металлами . При этом галогены проявляют свойства окислителя.

Например , хлор взаимодействует с магнием и кальцием:

При взаимодействии железа с хлором образуется хлорид железа (III):

3Cl2 + 2Fe → 2FeCl3

2. Галогениды металлов можно получить при взаимодействии металлов с галогеноводородами.

Например , соляная кислота реагирует с железом с образованием хлорида железа (II):

Fe + 2HCl → FeCl2 + H2

3. Галогениды металлов можно получить при взаимодействии основных и амфотерных оксидов с галогеноводородами.

Например , при взаимодействии оксида кальция и соляной кислоты:

2HCl + CaO → CaCl2 + H2O

Еще пример : взаимодействие оксида алюминия с соляной кислотой:

4. Галогениды металлов можно получить при взаимодействии оснований и амфотерных гидроксидов с галогеноводородами.

Например , при взаимодействии гидроксида натрия и соляной кислоты:

HCl + NaOH → NaCl + H2O

Или при взаимодействии гидроксида меди (II) с соляной кислотой:

Гидроксид цинка (II) также взаимодействует с соляной кислотой:

5. Некоторые соли взаимодействуют с галогеноводородами с образованием галогенидов металлов.

Например , гидрокарбонат натрия реагирует с бромоводородом с образованием бромида натрия:

HBr + NaHCO3 → NaBr + CO2↑ + H2O

Взаимодействие с нитратом серебра – качественная реакция на соляную кислоту, бромодоводород и йодоводород:

HCl + AgNO3 → AgCl↓ + HNO3

HBr + AgNO3 → AgBr↓ + HNO3

HI + AgNO3 → AgI↓ + HNO3

Химические свойства галогенидов

1. Растворимые галогениды вступают в обменные реакции с растворимыми солями, кислотами и основаниями , если образуется осадок, газ или вода.

Например , бромиды, йодиды и хлориды реагируют с нитратом серебра с образованием желтого, желтого и белого осадков соответственно.

NaCl + AgNO3 → AgCl↓ + NaNO3

Фторид серебра – растворимая соль, поэтому реакция фторидов с нитратом серебра не является качественной.

Видеоопыты качественных реакций на хлорид-, бромид- и йодид-ионы (взаимодействие с нитратом серебра) можно посмотреть здесь.

2. Галогениды тяжелых металлов реагируют с более активными металлами . При этом более активные металлы вытесняют менее активные.

Например , магний вытесняет медь из расплава хлорида меди (II):

Mg + CuCl2 → MgCl2 + Cu

Обратите внимание! В растворе более активные металлы вытесняют менее активные только если более активные металлы не взаимодействуют с водой (металлы, расположенные в ряду активности до магния). Если добавляемый металл слишком активен, то он провзаимодействует с водой, а не с солью.

Например , натрий не вытесняет цинк из раствора хлорида цинка. Т.к. натрий реагирует с водой, а реакция с хлоридом цинка не идет.

Na + ZnCl2(раствор)

3. Галогениды подвергаются электролизу в растворе или расплаве. При этом на аноде образуются галогены.

Например , при электролизе расплава бромида калия на катоде образуется клий, а на аноде – бром:

2KBr → 2K + Br2

При электролизе раствора бромида калия на катоде выдялется водород, а на аноде также образуется бром:

4. Галогениды металлов проявляют восстановительные свойства . Хлориды окисляются только сильными окислителями, а вот йодиды уже являются очень сильными восстановителями. В целом, восстановительные свойства галогенидов аналогичны свойствам галогеноводородов.

Например , бромид калия окисляется концентрированной серной кислотой:

Еще пример : йодид калия окисляется соединениями меди (II) и соединениями железа (III):

4KI + 2CuCl2 → 2CuI↓ + I2↓ + 4KCl

2KI + 2FeCl3 → I2↓ + 2FeI2 + 2KCl

Еще несколько примеров восстановительных свойств галогенидов:

KI + 3H2O + 3Cl2 → HIO3 + KCl + 5HCl

Более активные галогены вытесняют менее активные из солей.

При этом галогениды металлов не горят в кислороде.

5. Нерастворимые галогениды металлов растворяются под действием избытка аммиака .

Например , хлорид серебра (I) растворяется под действием избытка раствора аммиака:

6. Нерастворимые галогениды под действием света разлагаются на галоген и металл.

Например , хлорид серебра разлагается под действием ультрафиолета:

2AgCl → 2Ag + Cl2

Кислородсодержащие кислоты галогенов

Рассмотрим кислородсодержащие кислоты галогенов на примере хлора:

Степень окисления галогена +1 +3 +5 +7
Формула HClO HClO2 HClO3 HClO4
Название кислоты Хлорноватистая Хлористая Хлорноватая Хлорная
Устойчивость и сила Существует только в растворах, слабая кислота Существует только в растворах, слабая кислота Существует только в растворах, сильная кислота Сильная кислота
Название соответствующей соли Гипохлориты Хлориты Хлораты Перхлораты

Хлорноватистая кислота и ее соли

Хлорноватистая кислота HClO устойчива только в разбавленном водном растворе.

Cпособ получения хлорноватистой кислоты:

1. Диспропорционирование хлора в холодной воде :

Cl2 + H2O ↔ HCl + HClO

Химические свойства хлорноватистой кислоты:

Хлорноватистая кислота HClO – это слабая кислота, но сильный окислитель.

1. Под действием ультрафиолета (на свету) хлорноватистая кислота разлагается :

2HClO → 2HCl + O2

2. Как кислота, хлорноватистая кислота реагирует с сильными основаниями .

Например , с гидроксидом калия:

HClO + KOH → KClO + H2O

3. Ярко выражены окислительные свойства хлорноватистой кислоты за счет атома хлора в степени окисления +1. При взаимодействии с восстановителями хлор, как правило, восстанавливается до степени окисления -1.

Например , хлорноватистая кислота окисляет йодоводород:

HClO + 2HI → HCl + I2 + H2O

Хлорноватистая кислота также окисляет, например , пероксид водорода:

4. Хлорноватистая кислота диспропорционирует:

3HClO → 2HCl + НСlO3

Химические свойства солей хлорноватистой кислоты (гипохлоритов):

1. Более сильные кислоты вытесняют гипохлориты из солей.

Например , соляная кислота реагирует с гипохлоритом натрия:

NaClO + 2HCl → NaCl + Cl2 + H2O

Серная кислота реагирует с гипохлоритом кальция при нагревании или под действием излучения:

Даже угольная кислота вытесняет гипохлориты:

2. Гипохлориты вступают в обменные реакции с другими солями , если образуется слабый электролит.

Например , гипохлорит кальция реагирует с растворимыми карбонатами:

3. При нагревании гипохлориты разлагаются :

Хлористая кислота и ее соли

Хлористая кислота HClO2 – существует только в водных растворах.

Способы получения:

Хлористую кислоту можно получить окислением оксида хлора пероксидом водорода:

Химические свойства хлористой кислоты:

1. Хлористая кислота является также слабой. Реагирует с щелочами с образованием хлоритов:

2. При длительном хранении разлагается:

Хлорноватая кислота и ее соли

Хлорноватая кислота HClO3 – также существует только в водных растворах.

Способы получения:

Хлорноватую кислоту можно получить из солей хлорноватой кислоты – хлоратов.

Например , из хлората бария под действием серной кислоты:

Химические свойства хлорноватой кислоты:

1. Хлорноватая кислота – сильная кислота. Реагирует с щелочами с образованием хлоратов:

2. Хлорноватая кислота – сильный окислитель.

Например , хлорноватая кислота окисляет фосфор:

Химические свойства солей хлорноватой кислоты – хлоратов:

1. Хлораты сильные окислители.

Например , хлорат калия (бертолетова соль) при нагревании разлагается. При этом без катализатора хлорат диспропорционирует:

4KClO3 → 3KClO4 + KCl

В присутствии катализатора (оксид марганца (IV)) хлорат калия разлагается, окисляя кислород:

2KClO3 → 2KCl + 3O2

Еще пример : хлорат калия окисляет серу и фосфор:

2KClO3 + 3S → 2KCl + 3SO2

Хлорная кислота и ее соли

Хлорная кислота HClO4 – это бесцветная жидкость, хорошо растворимая в воде.

Способы получения:

Хлорную кислоту можно получить из солей хлорной кислоты – перхлоратов.

Например , из перхлората натрия под действием серной кислоты:

Химические свойства хлорной кислоты:

1. Хлорная кислота – сильная кислота. Реагирует с щелочами с образованием перхлоратов:

2. Хлорная кислота – сильный окислитель.

Например , хлорная кислота окисляет углерод:

3. При нагревании хлорная кислота разлагается:

Химические свойства солей хлорной кислоты – перхлоратов:

1. Перхлораты сильные окислители.

Например , перхлорат калия при нагревании разлагается. При этом хлор окисляет кислород:

Еще пример : перхлорат калия окисляет алюминий:

Источник

Оцените статью
Разные способы