Способы получения энергии хемотрофами

Способы получения энергии хемоорганогетеротрофами

Большинство существующих в природе микроорганизмов относятся к хемоорганогетеротрофам. Этим микроорганизмам принадлежит ведущая роль в круговороте веществ в природе, многие их них используются в важнейших биохимических процессах пищевых про­изводствах или лежащих в основе микробиологической порчи сырья, полуфабрикатов и го­товой продукции пищевых производств.

В качестве источников энергии они могут использовать широкий круг органических веществ. В основном это углеводы, а также спирты (одноатомный — этиловый спирт, трехатомный — глицерин; шестиатомные спирты — сорбит, маннит и др.), аминокислоты, пурины, пиримидины, жиры, органические кислоты и др.

Большинство хемоорганогетеротрофов получают энергию и синтезируют углеродный скелет клеток из одного и того же органического соединения.

Необходимую энергию хемоорганогетеротрофы могут получать одним из следующих способов: аэробного дыхания, неполного окисления, брожения и анаэробного дыхания. В основе указанных способов получения энергии лежат про­цессы биологического окисления органических веществ. Различаются эти способы конечными акцепторами водорода (электронов). От степе­ни окисления органических веществ зависит количество энергии, полу­чаемое клеткой и аккумулированной в высокоэнергетических связях молекул АТФ. Различаются эти процессы и количеством высвобождающейся свободной энергии (тепловой или какой-либо другой).

В аэробных условиях при наличии молекулярного кислорода энергия может быть получена в результате аэробного дыхания (полного окисления), так и неполного окисления.

Аэробное дыхание. Донорами водорода (электронов) при дыха­нии служат органические вещества, конечным акцептором водорода является молекулярный кислород. В результате дыхания происходит полное окисление органических веществ кислородом воздуха до углекислого газа и воды с выделением большого количества энергии:

Такое количество энергии соответствует всему запасу свободной энергии, заключенному в I грамм-молекуле глюкозы. Этим способом по­лучают энергию многие аэробные бактерии, хлебопекарные и кормовые дрожжи.

При аэробном дыхании примерно 50% энергии теряется в виде тепла. Этим объясняется явление термогенеза — самосогревания боль­ших рыхлых, хорошо аэрируемых скоплений влажных растительных масс (сена, зерна, силоса, навоза, торфа и др.).

Неполное окисление. В аэробных усло­виях окисление органических веществ может осуществляться не до углекислого газа и воды, a до образования промежуточных недоокисленных продуктов и воды. При этом, так же, как и при аэробном дыхании, донорами водорода служат органические вещества, а акцептором — молекулярный кислород воздуха. Энергии в этом процессе освобождается значитель­но меньше.

Примером такого процесса может служить окисление этилового спирта уксуснокислыми бактериями до уксусной кисло­ты:

В молекуле спирта заключено гораздо больше энергии — 1369 кДж, но так как окисление в данном случае было неполным, то и энер­гии выделилось меньше, а остальная свободная энергия, заключенная в молекуле спирта, осталась в продукте неполного окисления — уксусной кислоте. Неполное окисление углеводов свойственно многим мицелиальным грибам. Грибы окисляют их с образованием лимонной, глюконовой, щавелевой и других органических кислот.

В анаэробных условиях в отсутствии молекулярного кислорода энергия может быть получена в результате либо брожения (неполного окисления в анаэробных условиях), либо анаэробного дыхания (полного окисления связанным кислородом).

Читайте также:  Способы что бы ноги не отекали

Брожение. Процесс брожения — это неполное окисление органиче­ских веществ в анаэробных условиях. Донором водорода при броже­нии является одно органическое вещество, а акцептором – другое органическое вещество, ко­торое при этом восстанавливается. При брожении энергии выделяется значительно меньше, чем при окислении 1 грамм-молекулы глюкозы в аэробных условиях. Например, при спиртовом брожении дрожжей — всего 118 кДж:

Глюкоза Этиловый спирт

Брожение характерно для молочнокислых, маслянокислых, пропионовокислых бактерий, спиртовых и пивных дрожжей.

Все виды брожения (молочнокислое, маслянокислое и т.д.) протекают также с неполным выделением энергии глюкозы, так как часть свободной энергии переходит в образующиеся восстановленные продукты брожения, которые накапливаются в среде.

Анаэробное дыхание. Анаэробное дыхание – это окисление органических веществ в анаэробных условиях с использованием связанного кислорода, находящегося в молекуле неорганического вещества, богатого кислородом. Это вещество является акцептором водорода. В роли акцепторов могут быть использованы, например, сульфаты или нитраты.

Окисление органических соединений кислородом нитратов называется нитратным дыханием:

Окисление органических веществ кислородом сульфатов назы­вается сульфатным дыханием:

Процессы анаэробного дыхания сопровождаются значительным выделением энергии. Анаэробное дыхание характерно для денитрифицирующи, десульфитирующих и некоторых других бактерий.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Хемотрофы

Хемотрофы — организмы, получающие энергию в результате окислительно-восстановительных реакций, окисляя химические соединения, богатые энергией — хемосинтеза (как неорганические — например молекулярный водород, серу, так и органические — углеводы, жиры, белки, парафины и более простые органические соединения), в отличие от фототрофов, получающих энергию в результате фотосинтеза.

Хемосинтезирующие бактерии (хемолитоавтотрофы) — бактерии, использующие диоксид углерода в качестве единственного источника углерода, энергию получают в результате окислительно-восстановительных реакций, донором электронов являются неорганические соединения. К хемолитоавтотрофам относят представителей родов Nitrosospina, Nitrosococcus, Thiobacillus и другие.

Выделяют также хемоорганогетеротрофов, использующих органические соединения и как источники углерода, и как доноры электронов (восстановители). К хемоорганогетеротрофам относятся представители родов Азотобактер ( Azotobacter ), Сальмонелла ( Salmonella ), Иерсиния ( Yersinia ), а также некоторые другие сапротрофные и паразитические микроорганизмы. Хемоорганогетеротрофный тип метаболизма характерен также для царств животных и грибов.

Для улучшения этой статьи желательно ? :
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Добавить иллюстрации.
  • Викифицировать статью.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Хемотрофы» в других словарях:

хемотрофы — организмы, получающие энергию за счет окисления хим. соединений (органических и неорганических). Ср. фототрофы. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) Хемотрофы группа микроорганизмов, к рые для целей… … Словарь микробиологии

Хемотрофы — [от хемо. и троф(ы)], организмы, синтезирующие органические вещества из неорганических за счет окисления сероводорода, аммиака и других веществ, имеющихся в среде. См. также Хемосинтез. Экологический энциклопедический словарь. Кишинев: Главная… … Экологический словарь

ХЕМОТРОФЫ — см. Автотрофы … Большой Энциклопедический словарь

хемотрофы — – организмы, использующие для биосинтеза энергию, выделяющуюся при окислении различных соединений … Краткий словарь биохимических терминов

Читайте также:  Предложите способы изменения игрушки куклы барби или солдатика

хемотрофы — см. Автотрофы. * * * ХЕМОТРОФЫ ХЕМОТРОФЫ, см. Автотрофы (см. АВТОТРОФЫ) … Энциклопедический словарь

ХЕМОТРОФЫ — см. Автотрофы … Естествознание. Энциклопедический словарь

хемотрофы — хемотр офы, ов, ед. ч. тр оф, а … Русский орфографический словарь

Автотрофы — (др. греч. αὐτός сам + τροφή пища) организмы, синтезирующие органические соединения из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными… … Википедия

Классификация организмов по способу питания и получения энергии — Содержание 1 Автотрофы 1.1 Фототрофы 1.2 … Википедия

Классификация организмов по способу получения энергии — Содержание 1 Автотрофы 1.1 Фототрофы 1.2 Хемотрофы 2 Гетеротрофы … Википедия

Источник

Хемотрофы

  • Хемотро́фы — организмы, получающие энергию в результате хемосинтеза — окислительно-восстановительных реакций, в которых они окисляют химические соединения, богатые энергией (как неорганические — например, молекулярный водород, серу, так и органические — углеводы, жиры, белки, парафины и более простые органические соединения), в отличие от фототрофов, получающих энергию в результате фотосинтеза. Исключением служат «не-редокс» механизмы, когда протонный электрохимический градиент (PMF, proton motive force) или натриевый электрохимический градиент (SMF, sodium motive force) создаются в результате реакций декарбоксилирования.

Хемосинтезирующие бактерии (хемолитоавтотрофы) — бактерии, использующие диоксид углерода в качестве единственного источника углерода. Получают энергию в результате окислительно-восстановительных реакций, донором электронов являются неорганические соединения. К хемолитоавтотрофам относят представителей родов Nitrosospina, Nitrosococcus, Thiobacillus и других.

Выделяют также хемоорганогетеротрофы, использующие органические соединения и как источники углерода, и как доноры электронов (восстановители). К хемоорганогетеротрофам относятся представители родов Азотобактер (Azotobacter), Сальмонелла (Salmonella), Иерсиния (Yersinia), а также некоторые другие редуценты и паразитические микроорганизмы. Хемоорганогетеротрофный тип метаболизма характерен также для царств животных и грибов.

Связанные понятия

Факультативные анаэробы — организмы, энергетические циклы которых проходят по анаэробному пути, но способные существовать при доступе кислорода, в отличие от облигатных анаэробов, для которых кислород губителен.

Источник

Способы получения энергии хемотрофами

Преобладающую часть бактерий составляют бактерии хемотрофы, получающие энергию в результате окислительно-восстановительных реакций расщепления химических веществ, которые в ряде случаев служат для них также источником питания. Разные бактерии получают энергию либо в процессе брожения либо в процессе дыхания.

При брожении АТФ образуется исключительни путём субстратного фосфорилирования, а в процессе дыхания преимущественно путём окислительного фосфорилирования за исключением начальных этапов превращения гексоз в триозы (гликолиз, см. ниже). Получение энергии субстратным фосфорилированием

Субстратное фосфорилирование может происходить при различных реакциях промежуточного метаболизма. При дегидрировании некоторых определённых субстратов часть энергии, освободившейся при окислении, сохраняется в форме высокоэнергетического фосфата. Богатая энергией фосфатная группа затем переносится на АДФ с образованием АТФ. Такой процесс называют фосфорилированием на уровне субстрата (субстратное фосфорилирование).

Рис. 4-7. Пути восстановления пирувата в процессе брожения.

В обмене углеводов важнейшие реакции, приводящие к регенерации АТФ, катализируют фосфоглицераткиназа (1,3-бифосфоглицерат + АДФ — 3-фосфоглицерат + АТФ), пируваткиназа (фосфоэнолпируват + АДФ = пируват + АТФ) и ацетаткиназа (ацетилфосфат или бутирилфосфат + АДФ = ацетат или бутират + АТФ). Бактерии и дрожжи, сбраживающие сахара, располагают лишь тем АТФ, который получается с помощью этих ферментов.

Читайте также:  Способ шнуровки оплетки руля

Брожение. При брожении происходит анаэробное разложение углеводов и образование АТФ посредством субстратного фосфорилирования. Брожение характерно для факультативных и облигатных анаэробов. При брожении продукты расщепления органического субстрата могут служить одновременно и донорами и акцепторами водорода. Отдельные этапы окисления представляют собой дегидрирование, при котором водород переносится на НАД. Акцепторами водорода в составе НАДН+ служат промежуточные продукты расщепления субстрата. Кислород подавляет брожение, и оно у факультативных анаэробов сменяется дыханием.

По выходу энергии брожение уступает дыхательному метаболизму: при сбраживании микроорганизмами 1 моля глюкозы образуется от 1 до 4 молей АТФ. Для сравнения; у дрожжей на 1 моль сброженной глюкозы образуется 2 моля АТФ, а при дыхании — 38. При ферментации субстратов в среде накапливаются конечные продукты (лактат, бутират, ацетон, 2-пропанол, этанол, ацетоин и др.). Определение природы этих продуктов— важный момент для идентификация анаэробов. Например, образование ацетоина определяют в реакции Фогеса-Проскауэра, кислотообразование — в тесте с метиловым красным, индолообразование — по методу Грациана. Применяют и другие тесты, разработанные для идентификации бактерий.

Любое брожение проходит две стадии: первая (окисление) включает превращение глюкозы в пировиноградную кислоту, вторая (восстановление) — присоединение атомов водорода для восстановления пировиноградной кислоты (рис. 4-7). Сам процесс образования пировиноградной кислоты включает серию реакций, общих для брожения и аэробного дыхания. У микроорганизмов выделяют три пути образования триоз (пировиноградной кислоты и глицеральдегидфосфата) из углеводов: гликолитичес-кий (фруктозо-1,6-бифосфатный), пентозофосфатный и 2-кето-З-дезокси-б-фосфоглюконатный (КДФГ-путь, путь Энтнера-Дудорова-Парнаса). Согласно образующимся продуктам, брожение разделяют на следующие типы.

Источник

Что такое хемотрофы? Определение, типы и примеры

Хемотрофы – организмы, которые получают энергию главным образом из углекислого газа и других неорганических химических веществ через процесс, называемый хемосинтезом. Хемосинтез осуществляется хемотрофами путем окисления доноров электронов из окружающей среды. Хемотрофы могут быть как автотрофными (хемоавтотрофы), так и гетеротрофными (хемогетеротрофы).

Хемоавтотрофы – микроорганизмы, синтезирующие органические вещества из неорганических с помощью хемосинтеза. Хемосинтез – это процесс, посредством которого некоторые бактерии и археи, преобразовывают химическую энергию в питательные вещества. Они способны использовать в качестве восстановителей неорганические соединения, такие как сероводород, сера, аммоний и железо, а также синтезировать органические соединения из углекислого газа. Хемоавтотрофы встречаются в экстремальной среде обитания, например в глубоководных источниках, куда не проникает солнечный свет. К ним относятся метаногены, галофилы, нитрификаторы, термоацидофилы, сероокисляющие бактерии и другие экстремофилы.

Хемогетеротрофы являются гетеротрофами (организмы, которые не могут синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза). Хемогетеротрофы подразделяются на хемолитогетеротрофов и хемоорганогетеротрофов:

  • Хемолитогетеротрофы – это микроорганизмы, которые для получения энергии используют процессы окисления неорганических соединений. Они способны использовать восстановленные неорганические соединения в качестве дополнительного источника энергии, но не могут фиксировать углерод, поэтому нуждаются в органическом источнике углерода. К хемолитогетеротрофам относятся сульфатвосстанавливающие бактерии и метанобразующие археи.
  • Хемоорганогетеротрофы – это организмы, которые получают энергию и углерод из органических соединений, таких как углеводы, липиды и белки. К хемоорганогетеротрофам относятся большинство микроорганизмов-деструкторов и все животные.

Источник

Оцените статью
Разные способы