- Как делают бензин
- Как производят бензин в промышленности
- Очистка сырой нефти
- Первичная переработка
- Вторичная переработка
- Каталитический риформинг
- Каталитический крекинг
- Процесс прямой перегонки
- Изомеризация
- Алкилирование
- Компаундирование
- Лабораторная проверка
- Сколько топлива можно получить из барреля сырой нефти
- Как производят бензин в домашних условиях
- Получение газового бензина
- Способы получения автомобильных топлив из нефти.
Как делают бензин
Бензин — топливная жидкость. Но всем интересно, как делают бензин . Методы изготовления такой смеси требуют строгого следования технологии, научного соблюдения химических законов и немалого труда специалистов. Рассмотрим, как и из чего делают бензин .
Как производят бензин в промышленности
Основой для получения бензина является нефть. После ее перегонки получают не только горючие смеси (бензин, керосин, дизельное топливо), но и много других полезных органических продуктов, например мазут. Ископаемое «черное золото» на 85% состоит из углерода и на 15% из водорода, которые создают сотни связей — углеводородов.
Методы производства бензина включают два основных способа: прямую перегонку и более совершенные технологии. Например:
- термический крекинг;
- каталитический крекинг;
- каталитический риформинг;
- гидрориформинг;
- платформинг.
Очистка сырой нефти
Для производства бензина из нефти , которая содержит все углеводороды, нужно ее переработать. В результате получают сырье, из которого изготавливают полезные вещества. Очистка сырой нефти — разделение ее компонентов на фракции. Процесс получения бензина начинается с одного из двух способов очистки:
- Термическая фракционная перегонка, при которой различные вещества выделяются при разной температуре кипения. Это — старый и распространенный способ выделения из нефти необходимых фракций. При этом нефтяные испарения конденсируются в жидкость для дальнейшей переработки.
- Химическая фракционная обработка позволяет из одних компонентов получать другие. Такая очистка называется конверсией. В результате конверсии длинные углеводородные цепи разбиваются на более короткие.
Первичная переработка
Первая стадия технологии производства бензина из нефти — атмосферное фракционирование, при котором нефтяное сырье разделяется на фракции. Атмосферная перегонка проходит в заданном температурном интервале (не более 350°С), т. к. при температурах выше указанного значения углеводородные вещества разрушаются.
Первичная переработка включает 2 технологических процесса:
- атмосферную перегонку;
- вакуумную дистилляцию.
Нефтеперерабатывающие заводы эти процессы проводят в одной установке, которая называется АВТ, или атмосферно-вакуумной трубчаткой. Часто с аппаратом АВТ используется ЭЛОУ (электро-обессоливающая установка). Вакуумная дистилляция нужна для разделения на фракции остатка атмосферной переработки — мазута. При этом нефть нагревается до 600°С при пониженном давлении. В результате получают гудрон (темное высоковязкое вещество).
Вторичная переработка
Вторичные процессы при производстве бензина из нефти увеличивают количество видов моторного топлива. Во время вторичной переработки происходит химическая модификация углеводородных молекул, при которой они преобразуются в формы, удобные для дальнейшего окисления.
Вторичная переработка имеет 3 основных направления:
- Углубляющее — термический и каталитический крекинг, гидрокрекинг, висбрекинг, коксование, производство битума и др.
- Облагораживающее — гидроочистка, риформинг, изомеризация и другие процессы.
- Производство масел и ароматических веществ, алкилирование, МТБЭ и т. п.
Каталитический риформинг
В процессе каталитического риформинга происходит ароматизация, т. е. образование ароматических веществ, повышение содержания аренов и газов, содержащих водород.
С помощью риформинга получают:
- неэтилированный высокооктановый бензин с повышением его октанового числа;
- арены (ароматические углеводороды);
- водосодержащий газ для последующей гидроочистки (изомеризации, гидрокрекинга и других процессов).
Жидкий риформат является высокооктановым компонентом авиационного и автомобильного топлива, а также из него выделяются ароматические вещества и газы, подвергающиеся разделению. Водород, выделяющийся при этом, дешевле, чем специально получаемый. В риформинге он используется для восполнения потери циркулирующих газов.
Каталитический крекинг
Каталитический крекинг — важный процесс термической переработки углеводородных фракций, при котором получают высокооктановое топливо, непредельные жирные газы и легкий газойль. При этом происходит глубокая переработка нефти с помощью эффективных катализаторов из алюмосиликатов, имеющих большой срок службы.
Процесс каталитического крекинга отличается эксплуатационной гибкостью и универсальностью. Он дает возможность разделять нефтяные фракции на высокооктановый бензин и газы, богатые пропиленом, бутенами и изобутаном. Крекинг легко совмещается со смежными процессами (гидроочисткой, гидрокрекингом, адсорбционной очисткой, алкилированием, деасфальтизацией и др.).
Основными реакциями при каталитическом крекинге являются:
- перераспределение водорода — гидрирование и дегидрирование;
- деалкилирование;
- полимеризация;
- дегидроциклизация;
- изомеризация;
- циклизация;
- реакции с олефинами;
- алкилирование;
- получение тяжелых веществ, которые в дальнейшем конденсируются до образования кокса.
Процесс прямой перегонки
Распространенный физический метод извлечь бензин из нефти — прямая перегонка, при которой нефть разделяется на фракции при разной температуре кипения. При нагревании нефти образуются пары, которые собирают и частями конденсируют. При перегонке получаются дистилляты топлива и мазутный остаток, используемый для изготовления смазочных масел.
Прямая перегонка нефти — единый технологический процесс в установке непрерывного производства (испарения и фракционирования дистиллятов). Пар подогреваемой нефти поднимается наверх в специальном резервуаре, разделенном металлическими дисками, которые имеют отверстия с колпачками. Смесь поднимающихся паров при охлаждении конденсируется на тарелках резервуара.
Вверху резервуар орошается частью легкокипящих фракций, а пары выводятся, подвергаются охлаждению и, конденсируясь, превращаются в жидкое топливо. При прямой перегонке получается до 15% бензина (от массы перерабатываемого сырья), а также образуются многие полезные продукты, такие как керосин, лигроин, солярка и др.
На дне резервуара остается мазут, используемый при помощи дальнейшего нагревания (свыше 400°С) для производства масляных продуктов. Из остатков производства масел получают полугудрон и гудрон, после обработки которых серной кислотой изготовляют высоковязкое смазочное масло (в т. ч. авиационное).
Изомеризация
Преобразование линейных углеводородов в соединения более разветвленной цепи, имеющих высокое октановое значение, называется изомеризацией. Низкооктановые фракции при помощи катализаторов превращают сырье в высокооктановый бензин. Изомеризация сопровождает процесс переработки нефти (крекинг, пиролиз).
При помощи изомеризации получаются соединения с другим расположением групп атомов, но не изменяется состав и молекулярная масса вещества. Изомеризация извлекает из бензина ароматические углеводороды, легкие фракции с низким октановым числом, олефины и бензол.
Технология изомеризации использует катализаторы с заданными каталитическими и химическими характеристиками, которые устойчивы к действию ядов. Уникальность данного процесса — в сочетании с селективной жидкой адсорбцией на молекулярных ситах. Это увеличивает конверсию парафинов и повышает характеристику легкого бензина прямой перегонки.
Алкилирование
Производство высокооктанового бензина из непредельного углеводородного газа называется алкилированием. При соединении алкана и алкена происходит реакция, в результате которой получается алкан, где число атомов углерода равно сумме атомов в исходных алкене и алкане. Молекулы алканов имеют большее октановое число, чем у алкенов, поэтому получаемое топливо отличается теми же характеристиками.
Сырьем для алкилирования является ББФ (бутан-бутиленовая фракция), получаемая при каталитическом крекинге. Основные составляющие ББФ — бутилен и изобутан. В качестве катализаторов используются фтористоводородная и серная кислоты. Но большая токсичность и высокая летучесть фтора не позволяют широко его использовать в промышленности, поэтому в нефтепереработке применяется сернокислотное алкилирование.
Компаундирование
Управляемое смешение нефти называется компаундированием. С помощью этой технологии несколько потоков смешиваются в один. При неуправляемом смешении показатели качества нефти во времени не стабильны и варьируются в зависимости от разного режима перекачки. Тогда как при компаундировании происходит сглаживание нестабильного потока дозированной подкачкой высокосернистой смеси в поток нефти с запасом качества.
Для регулирования потоков устанавливаются заслонки. Само регулирование проходит в 3 этапа:
- по отношению расходов потоков;
- по давлению на входе потока;
- по количеству серы на выходе.
В процессе компаундирования контролируются:
- плотность в потоке;
- температура в потоке;
- расход нефти в потоке.
В процессе управляемого смешения сокращаются выбросы серы. Возрастает стабильность качества нефтяных продуктов. Тогда как при неуправляемом смешении отмечается неравномерность качественных характеристик сырья. Компаундирование позволяет сделать поставки потребителям стабильными и качественными.
Лабораторная проверка
Лабораторная проверка изучает параметры горючих и смазочных веществ. Исследованию подлежат:
- бензин;
- дизельное топливо;
- керосин;
- моторные масла;
- нефть.
Перечень вопросов, стоящих перед экспертами, проводящими исследования:
- соответствие технологии изготовления топлива или ГСМ принятым стандартам;
- соответствие состава нефтепродуктов стандартам для этой марки;
- возможность этого топлива или ГСМ стать причиной для выхода из строя двигателей или механических узлов.
Сколько топлива можно получить из барреля сырой нефти
При переработке барреля нефти (159 л) объем нефти увеличивается на 9 л (до 168 л). Из этого количества сырья производят:
- бензина — 102 л;
- дизельного топлива — 30 л;
- авиационного бензина — 25 л;
- газа после перегонки — 11 л;
- кокса — 10 л;
- мазута — 5,6 л;
- сжиженного газа — 4,5 л;
- древесного угля — 1,5 кг;
- газа пропан — 12 баллонов;
- моторного масла — 1 л.
Как производят бензин в домашних условиях
Методом прямой перегонки можно получить бензин в домашних условиях. При нагревании нефтяного сырья происходит испарение топлива, для чего из основной емкости в другую проводится трубка. При разных температурах получают различные нефтепродукты:
- бензин — +35…+250°С;
- керосин — +150…+305°С;
- дизельное топливо — +150…+360°С.
Схема перегонного аппарата такая же, как и у самогонного. Но домашнее производство бензина имеет много недостатков. Это и малый выход топлива (150 мл из 1 л нефти), и низкое октановое число (не выше 60 ед.). Чтобы поднять октановый уровень до 92 или 95 бензина нужны добавки и присадки. Гораздо практичнее делать бензин из различных отходов, соломы, использованных шин, древесного угля и т. п.
Получение газового бензина
При извлечении углеводородов при переработке газов происходит их отбензинивание при помощи твердых сорбентов. Необходимо повысить поглощение активированным углем удельного количества углеводородов. Для этого в уголь добавляют растворитель типа толуола с дималеинимидом (0,1-1%). Затем через слой угля пропускают попутный или природный газ.
На специфически обработанном в течение 2 часов угле происходит удельное поглощение тяжелых углеводородов. Через насыщенный сорбент пропускают пар в таком же направлении, что и газ для отбензинивания. После чего сорбент сушат и используют в следующих циклах. Газоконденсат сепарируют. Это автоматически приводит к получению стабильного газового бензина.
Стоимость производства бензина из газа снижается за счет предварительной обработки сорбента и увеличения его поглотительного свойства больше чем на 50%. Это позволяет отказаться от применения пропускаемого через уголь стабильного вещества или уменьшить его количество. Уменьшаются затраты по использованию колонн и оснащенности аппаратурой.
Источник
Способы получения автомобильных топлив из нефти.
Автомобильные топлива получают из нефти прямой перегонкой (первичный процесс) и деструктивными методами (вторичные процессы) ее переработки. Прямая перегонка всегда предшествует деструктивным методам переработки. При деструктивных (химических) способах происходит изменение структуры и химического состава углеводородов, образующих нефть, а при прямой перегонке (физическом способе) нефть лишь разделяется на фракции (с определенными температурами кипения) без протекания химических реакций (Рис.74.).
Перегонка – дистилляция (стекание каплями) – разделение нефти на отличающиеся по составу фракции, основанное на различии в температурах кипения углеводородов входящих в состав нефти.
Фракция – химическая составная часть нефти с одинаковыми физическими и химическими свойствами (соединения, выкипающие в определенном интервале температур), выделяемая при перегонке.
При нагреве нефти в специальной трубчатой печи до 330-350º С, углеводороды, входящие в ее состав переходят в парообразное состояние. Образуется смесь паров нефти и неиспарившегося остатка, поступающая теплообменник в ректификационную колонну. В ректификационной колонне пары конденсируются в несколько этапов, получающиеся при этом конденсаты (дистилляты), собираются в ряд емкостей с таким расчетом, чтобы в каждой из них находилась определенная фракция, т.е. смесь углеводородов, выкипающая в заданном интервале температур.
Углеводороды с температурами кипения ниже 40º С в основном состоят из нефтяных газов, которые используются в качестве сырья для получения многих синтетических продуктов, добавок к бензинам и топлива для газобаллонных автомобилей.
Смесь углеводородов с температурами кипения от 40 до
200º С называется автомобильным бензином, а фракция нефти, извлекаемая из нее в интервале температур 200-350º С, представляет собой дизельное топливо.
Остаток от нефти, получающийся после извлечения из нее автомобильных топлив, называется мазутом.
Продуктами прямой перегонки нефти являются следующие дистилляты: бензин (40-200º С); лигроин (110-230º С); керосин (140-300º С); газойль (230-330º С); соляр (280-350º С).
Лигроин – используется как дизельное топливо и в качестве сырья для получения высокооктановых бензинов.
Газойль, является промежуточным продуктом между керосином и смазочными маслами, используется как топливо для дизелей, а также является сырьем для каталитического крекинга.
Получение бензинов крекинг-процессами.
Крекинг (расщепление) является основным методом деструктивной переработки нефти. Основное назначение крекинга состоит в том, чтобы из тяжелых нефтепродуктов (мазута, керосина, дизельного топлива) в процессе расщепления в условиях высоких температур и давления получить бензин, который преимущественно состоит из углеводородов с числом атомов углерода от 5 до 12.
Крекинг может происходить под действием повышенных температур (470-550º С) и давлении (2-7 МПа) – термический крекинг или же под действием повышенных температур (450-500º С), незначительного давления (около 0,15 МПа), но в присутствии катализатора (в качестве катализатора применяют синтетические алюмосиликаты, содержащие 75-80 % SiO2 и 10-25 % Al2O3) – каталитический крекинг, который не только ускоряет процессы расщепления молекул сырья, но и изомеризует продукты распада, превращая их в конечном итоге в желательные изопарафиновые и ароматические углеводороды.
Бензины термического крекинга обладают плохой стабильностью и при хранении интенсивно окисляются и осмоляются, что обусловлено высоким содержанием в их составе непредельных углеводородов (до 40 %). Октановое число бензинов полученных термическим крекингом находится в пределах 66-74.
Каталитический крекинг позволяет получить бензин октановым числом до 95.бензины каталитического крекинга содержат значительное количество изопарафиновых и ароматических углеводородов (порядка 50 %), а также нафтеновые углеводороды (20-25 %).
Получение бензинов риформингом и синтезом углеводородных газов.
Основное назначение риформинга – улучшение химического состава бензиновых фракций, извлекаемых из нефти при ее разгонке.
Каталитический риформинг является одним из основных процессов современной нефтепереработки, он протекает при температуре порядка 500º С и под давлением около 2 МПа в присутствии водорода и молибденового (гидроформинг), или платинового (платформинг) катализатора.
Бензиновые фракции получают также из газообразных углеводородов методами полимеризации и алкилирования.
Алкилирование заключается в присоединении олефиновых углеводородов к парафиновым или ароматическим. В результате получают высокооктановый (85-95) химически стабильный компонент бензина.
Полимерные бензины, получаемые из газов, богатых олефиновыми углеводородами, имеют высокое октановое число (80-85), но обладают недостаточной химической стабильностью.
Технико-экономические требования к бензину
Бензин это почти бесцветная, замерзающая при температуре ниже -60º С смесь углеводородов различного состава. Этот состав способен образовывать взрывчатые смеси (с одновременным возникновением большого количества теплоты, выделяемой при сгорании) при концентрации паров в воздухе 74-123 г/м 3 .
В состав бензинов входят углеводороды, выкипающие при температуре от 40 до 200º С.
Основные технико-экономические требования к бензинам сводятся к следующему:
· бензин должен обеспечивать безотказную работу автомобильного двигателя на всех режимах и во всех практически встречающихся условиях эксплуатации;
· двигатель должен развивать предусмотренную для него мощность, расходуя минимальное количество бензина;
· бензин должен обеспечивать минимальные износы деталей двигателя (обладать противоизносными и антикоррозионными свойствами), а также минимальные трудовые и материальные затраты на ремонт и техническое обслуживание двигателя;
· качество бензина не должно заметно ухудшаться при транспортировании, хранении и использовании;
· обращение с бензином не должно вызывать повышенной опасности для здоровья лиц, занимающихся эксплуатацией, техническим обслуживанием и ремонтом автомобилей.
Показатели физико-химических свойств бензина, характеризующие его эксплуатационные качества.
В современных быстроходных двигателях процесс сгорания топлива протекает достаточно быстро – в десятые или сотые доли секунды. Так же быстро должны проходить процессы подготовки смеси воздуха с топливом (процесс смесеобразования). В карбюраторном двигателе бензин дозируется калибровочными отверстиями жиклеров. Объем бензина поступающего из поплавковой камеры в смесительную, будет зависеть от способности его оказывать сопротивление при движении по каналам, т.е. от вязкости, а масса дополнительно еще и от плотности.
Плотностью, называется масса вещества, отнесенная к единице его объема. Зависимость плотности от температуры незначительна, с понижением температуры на каждые 10º С ее величина возрастает только на один процент.
Вязкостью называется свойство жидкости оказывать сопротивление внешней силе, перемещающей ее слои друг относительно друга. Величину вязкости выражают в единицах динамической или кинематической вязкости.
За единицу динамической вязкости принята вязкость такой жидкости, в объеме которой две параллельные площадки размером по 1 м 2 , отстоящие друг от друга на 1 м, будут двигаться с относительной скоростью 1 м/с под действием силы в 1Н.
Эта единица имеет размерность Па · с = Н · с/м 2 = кг/(м · с).
С понижением температуры вязкость автомобильных бензинов повышается, причем в значительно большей степени (примерно в 10 раз быстрее), чем плотность.
Еще одним показателем, влияющим на качество бензино-воздушной смеси является величина поверхностного натяжения бензина, от которой зависит размер капли получающейся при распыливании бензина в зоне диффузора.
Поверхностное натяжение всех автомобильных бензинов одинаково и при + 20º С равно 20-24 мН/м.
Таким образом, на смесеобразование оказывают влияние плотность, поверхностное натяжение и особенно вязкость автомобильных бензинов.
Энергетические свойства топлива характеризуются теплотой сгорания. Теплотой сгорания называется тепло, выделяющееся при полном сгорании 1 кг вещества. Чем выше теплота сгорания топлива, тем меньше его требуется на 1 км пробега или на 1 час работы автомобиля. Теплота сгорания автомобильного бензина составляет
44000 кДж/кг. Теплота сгорания бензино-воздушной смеси зависит от соотношения в ней бензина и воздуха, и характеризуется коэффициентом избытка воздуха .
где L – фактическое количество воздуха поступающего в двигатель, кг; L0 – теоретически необходимое количество воздуха для полного сгорания 1 кг топлива, кг. Для бензина L0 = 14,8 кг. Обогащение бензино-воздушной смеси ( = 0,9) не повышает ее теплоту сгорания, но мощность двигателя при этом возрастает из-за повышения скорости сгорания бензино-воздушной смеси.
Обеднение смеси приводит к заметному снижению теплоты сгорания, скорости сгорания и развиваемой двигателем мощности. Однако при работе двигателя на бедной рабочей смеси достигается экономия бензина, наблюдается более полное сгорание топлива, снижается температура продуктов сгорания, уменьшается теплоотдача в стенки.
Испаряемость автомобильных бензинов и их фракционный состав.
Испаряемостью жидкостей называется способность их переходить из жидкого состояния в парообразное. Автомобильные бензины должны обладать определенной испаряемостью, обеспечивающей: легкий пуск двигателя, быстрый его прогрев, полное сгорание бензина после прогрева двигателя, невозможность образования паровых пробок в топливной системе. Испаряемость характеризуется в основном фракционным составом топлива (температурными пределами выкипания отдельных фракций топлива) и давлением насыщенных паров (давление пара , находящегося в равновесии с жидкостью при определенной температуре). Фракционный состав является показателем испаряемости бензина и устанавливает зависимость между объемом бензина и температурой, при которой он перегоняется.
При определении фракционного состава любого топлива отмечаются температуры начала (НР) и конца (КР) разгонки. По температуре перегонки заданный объем бензина подразделяется на фракции: начальные, составляющие по объему до 10 % и выкипающие при достижении температуры 50-70º С; средние, составляющие по объему до 50 % и выкипающие при температуре до 100-115º С; конечные, составляющие по объему до 90 % и выкипающие при температуре 185-195º С.
Температуры выкипания названных фракций бензина оказывают непосредственное влияние на его эксплуатационные показатели и на работу двигателя. Температуры выкипания начальных (t10%) фракций определяют легкость пуска холодного двигателя и скорость его прогрева на холостом ходу. Чем ниже эта температура, тем легче и быстрее можно пустить холодный двигатель, так как большее количество бензина будет попадать в цилиндры в паровой фазе. Однако, если бензин имеет слишком низкие температуры начала перегонки и перегонки 10 %, то при горячем двигателе и особенно в жаркое время в системе питания могут испаряться наиболее низкокипящие углеводороды, образуя пары, объем которых в 150-200 раз больше объема бензина. При этом горючая смесь обедняется, что вызывает перебои в работе двигателя или его остановку. Это явление получило название «паровой пробки».
Температура выкипания средних (t50%) фракций влияет на приемистость двигателя (интенсивность разгона) и устойчивость работы на малой частоте вращения коленчатого вала. Чем ниже эта температура, тем легче испаряются средние фракции бензина, обеспечивая поступление в непрогретый еще двигатель горючей смеси необходимого состава. Если t50% оказывается чрезмерно высокой, то испарение бензина происходит медленно, топливовоздушная смесь образуется обедненной, а поэтому прогрев двигателя получается длительным и приемистость его заметно ухудшается.
По температуре перегонки 90 % и температуре конца перегонки судят о наличии в бензине тяжелых трудноиспаряемых фракций, об интенсивности и полноте сгорания рабочей смеси, о мощности, развиваемой двигателем, и количестве расходуемого топлива, об износах двигателя. Чем выше t90%, КР, тем вероятнее неполное испарение и сгорание бензина попадающего в цилиндр. Неполное сгорание топлива ведет к увеличению его расхода и снижению мощности двигателя. Еще большая опасность возникает оттого, что несгоревшие фракции бензина, оседая на стенках цилиндра, смывают с них масло и, стекая в картер, разжижают масло.
Бензин считается удовлетворяющим требованиям нормальной работы двигателя, если составляющие его фракции находятся в пределах температур перегонки. при отклонении фракционного состава от заданных температур ухудшаются пусковые свойства, возрастает расход топлива и уменьшается развиваемая двигателем мощность.
Еще одним параметром характеризующим фракционный состав является величина потерь бензина при перегонке. По данному показателю судят о склонности бензина к испарению при транспортировке и хранении.
Давление насыщенных паров характеризует испаряемость начальных (головных) фракций бензинов и прежде всего их пусковые качества. Чем больше в бензине легких фракций, тем выше давление его насыщенных паров и тем лучше его пусковые свойства. Однако с повышением давления насыщенных паров бензина возрастает склонность к образованию им паровых пробок, и увеличиваются потери от испарения его на складах и топливных баках. Для бензинов летнего вида давление насыщенных паров не должно превышать 500 мм рт. ст., а для зимнего вида оно должно быть в пределах 500-700 мм рт. ст. Летний бензин предназначен для использования с 1 апреля по 1 октября и имеет испаряемость фракций ниже, чем зимний (с 1 октября по 1 апреля).
Механические примеси в бензине не допускаются. Они приводят к засорению топливных фильтров, топливопроводов, жиклеров, что нарушает нормальную работу двигателя. Пир попадание механических примесей в двигатель увеличивается износ цилиндров и поршневых колец.
Вода в бензине не допускается так как при температурах ниже 0º С замерзает, образуя кристаллы льда, которые могут предотвратить доступ бензина в цилиндры двигателя. Кроме того, вода способствует осмолению бензина, так как в ней растворяется ингибитор, а так же является основным источником коррозии стальных деталей системы питания.
Растворимость воды в бензинах и других нефтепродуктах невелика и составляет при обычных условиях сотые доли процента. Такая концентрация воды в бензине не вносит осложнений в практику эксплуатации автомобилей.
Виды сгорания рабочей смеси в двигателе с воспламенением от искры.
Развиваемая двигателем мощность в большой степени зависит от характера сгорания бензино-воздушной смеси: скорости сгорания, полноты сгорания, моментов начала и конца сгорания.
Сгорание рабочей смеси может быть нормальное, в результате самовоспламенения (калильное зажигание) и детонационное.
Нормальное сгорание. Сгорание смеси называется нормальным, если она полностью сгорает в цилиндрах двигателя при средних скоростях распространения фронта пламени, укладывающихся в пределы от 15 до 30 м/с. При нормальном сгорании смесь сжатая до 10-16 кгс/см 2 и нагретая теплом сжатия до 350-380º С, воспламеняется от искры свечи зажигания. Длительность основной фазы сгорания составляет 25-30º угла поворота коленчатого вала или примерно 0,0025 с при 2000 об/мин.
В случае возникновения калильного зажигания (самовоспламенения) часть смеси воспламеняется не от искры свечи зажигания, а самопроизвольно от перегретых деталей или раскаленных частиц нагара на стенках камеры сгорания.
Характерный внешний признак самовоспламенения в карбюраторном двигателе – это продолжение работы двигателя с очень низкой частотой вращения коленчатого вала (200-300 об/мин) после выключения зажигания.
Самовоспламенение может являться причиной возникновения детонации.
Детонацией называется ненормальная работа двигателя с воспламенением от искры, вызванная взрывным сгоранием части горючей смеси и сопровождающаяся металлическими стуками, появлением в отработавших газах черного дыма, падением мощности, перегревом двигателя и другими вредными последствиями вплоть до механического повреждения отдельных деталей двигателя.
Детонационное сгорание рабочей смеси происходит в результате цепных реакций образования и самопроизвольного распада углеводородных перекисей под воздействием высоких температур и давлений, которым подвергается рабочая смесь, сгорающая в последнюю очередь.
Первоначально воспламенение рабочей смеси происходит от искры свечи зажигания и фронт пламени распространяется по камере сгорания с нормальными скоростями. При этом температура пламени достигает 2000-2500º С. Условия для детонации наиболее благоприятны в той части камеры сгорания, где выше температура и больше время пребывания смеси. При нормальном протекании процесса сгорания для самовоспламенения (и последующей детонации) рабочей смеси не хватает времени. Если же очаги воспламенения возникают в рабочей смеси до подхода фронта пламени вызванного искрой свечи зажигания, то такое сгорание, как и давление в цилиндре, распространяется со скоростью звука и приобретает взрывной характер. В цилиндре возникают и распространяются ударные волны, которые при столкновении со стенками вызывают сильные динамические нагрузки и сопровождаются звонким «металлическим» стуком. При детонации скорость распространения пламени в камере сгорания достигает 2000-2500 м/с, а температура сгоревшей смеси повышается до 2500-3000º С.
На появление детонации влияют детонационная стойкость бензина, состав рабочей смеси, режим работы двигателя. Для подавления детонации при эксплуатации карбюраторных двигателей автомобилей можно использовать уменьшение опережения зажигания, прикрытие дросселя и увеличение скорости вращения коленчатого вала.
Методы оценки детонационной стойкости бензинов.
Детонационная стойкость бензинов оценивается октановыми числами, определяемыми по моторному и исследовательскому методам. Показатель октанового числа входит в маркировку бензина.
Октановое число определяется на одноцилиндровой установке определенной конструкции (установка ИТ9-2м – моторный метод – ГОСТ 511-82, установка ИТ9-6 – исследовательский метод – ГОСТ 8226-82) с переменной степенью сжатия в эталонных условиях на обедненной смеси. Величину октанового числа находят сравнением исследуемого топлива с эталонным топливом. В качестве эталонного топлива применяют смеси с различным содержанием по объему двух углеводородов – изооктана (С8Н18),чья детонационная стойкость принята за 100, и нормального гептана (С7Н16), детонационная стойкость которого принята за нуль.
Октановое число жидкого топлива (бензина) численно равно процентному содержанию изооктана в такой смеси с нормальным гептаном эталонных топлив, которая по детонационной стойкости равноценна испытуемому бензину.
Испытания по исследовательскому методу проводят при менее напряженном режиме, чем по моторному: смесь за карбюратором не подогревают, тогда, как во втором случае температуру подогрева смеси поддерживают на уровне 150º С. Поэтому моторный метод точнее оценивает детонационные свойства автомобильного бензина на форсированных режимах езды, а исследовательский – на ограниченной мощности с частыми остановками и при меньшей тепловой напряженности.
Октановые числа определенные по моторному методу, обычно на 4-10 меньше октанового числа, определенного исследовательским методом. Чем выше степень сжатия карбюраторного двигателя (двигателя с внешним смесеобразованием), тем с большим октановым числом должно применяться топливо.
Методы повышения октанового числа бензинов.
Повышение октанового числа бензинов в основном достигается двумя способами, а именно воздействием на их химический состав и введением в них специальных присадок – антидетонаторов. Углеводороды, входящие в состав бензинов, различаются по детонационной стойкости. Наименьшей детонационной стойкостью обладают нормальные парафиновые углеводороды, наибольшей -ароматические.
Варьируя углеводородным составом, получают бензины с различной детонационной стойкостью. Практически это осуществляется при каталитическом крекинге и риформинге, а также путем добавки к бензинам высокооктановых компонентов, синтезированных из газообразных углеводородов.
Наибольшее распространение получил второй метод повышения детонационной стойкости – с помощью антидетонаторов.
Антидетонаторами называют такие вещества, которые при добавлении к бензину в относительно небольших количествах резко повышают его детонационную стойкость. К их числу относятся металлоорганические соединения. Наиболее эффективным антидетонатором, является тетраэтилсвинец (ТЭС). ТЭС (Pb(C2H5)4) – бесцветная прозрачная жидкость плотностью 1,65. В воде ТЭС не растворяется, но хорошо растворяется в бензине и других органических растворителях. Механизм действия антидетонаторов, и в частности тетраэтилсвинца, объясняется перекисной теорией детонации и цепных реакций. При высоких температурах в камере сгорания (500-600º С) ТЭС полностью разлагается c образованием металлического свинца
Pb(C2H5)4 4C2H5 + Pb
Образующийся свинец окисляется с образованием диоксида свинца,
Pb + О2 PbО2
который вступает в реакцию с пероксидами (перекисями) и разрушает их. При этом образуются малоактивные продукты окисления углеводородов и оксид свинца, способный реагировать с новой молекулой переоксида. Таким образом, один атом свинца, восстанавливаясь и окисляясь, способен разрушить большое количество пероксидных молекул. В чистом виде антидетонационные присадки к бензинам использовать не удается, так как продукты сгорания в виде нагара откладываются и накапливаются в камере сгорания. В связи с этим ТЭС добавляют в бензин в смеси с веществами – выносителями, образующими со свинцом и его оксидами при сгорании летучие вещества, которые удаляются из двигателя с отработавшими газами. В качестве выносителей применяют вещества, содержащие бром, и в меньшей степени хлор. Смесь ТЭС и выносителя, которая применяется как антидетонатор, называется этиловой жидкостью. Автомобильные бензины, содержащие этиловую жидкость, называются этилированными.
Этиловая жидкость Р-9 представляет собой смесь тетраэтилсвинца с этилбромидом и хлорнафталином. Этиловая жидкость П.-2 – смесь тетраэтилсвинца с дибромпропаном и хлорнафталином.
В связи с ужесточением норм на выбросы вредных веществ с отработавшими газами этилированные бензины заменяются неэтилированными.
В последнее время в качестве антидетонатора применяется (особенно за рубежом) марганцевый антидетонатор (ЦТМ), равноценный по эффективности ТЭС.
ЦТМ (циклопентадиенилтрикарбонил марганца) С5Н5Mn(CO)3 представляет собой кристаллическое вещество, хорошо растворяющееся в бензине. К антидетонатору ЦТМ добавляется выноситель (бисэтилксантоген) и антинагарная присадка (трикрезилфосфат). Бензин, содержащий ЦТМ, по токсичности приближается к чистому бензину. Недостатком ЦТМ является интенсивное образование окиси марганца на электродах свечей, быстро приводящее к замыканию искрового промежутка и, следовательно, к остановке двигателя.
В качестве высокооктановой добавки к бензинам используют метилтретбутиловый эфир (МТБЭ). Физико-химические свойства МТБЭ близки к свойствам бензина. Добавка 10 % МТБЭ в бензин повышает октановое число на 5-6 единиц.
Повысить октановое число бензина можно введением в его состав ароматических аминов (до 2 %). Например, высокоэффективной добавкой к бензинам является экстралин, представляющий собой смесь производных ароматических соединений.
Наиболее глубокие изменения свойств бензина происходят в результате двух физических процессов: нарушение однородности бензина вследствие выпадения кристаллов высокоплавких углеводородов и испарения его легких фракций.
Кристаллизация углеводородов в отечественных автомобильных бензинах происходит при очень низких температурах (ниже -60º С), поэтому при эксплуатации автомобилей даже в суровых зимних условиях не нарушается работа двигателей и их систем питания. При транспортировании, и хранении бензина происходит испарение легких фракций бензина, что заметно сказывается на пусковых качествах топлива, а именно на начальных точках разгонки и особенно на давлении насыщенных паров, которое от испарения 3-4 % бензина может снизиться в 2-2,5 раза. Из выше сказанного следует, что бензины должны храниться в герметичной таре по возможности при низкой и малоизменяющейся температуре, лучше всего в подземных хранилищах.
Изменение свойств бензина может произойти от химических превращений его компонентов и в первую очередь от окисления непредельных углеводородов. Склонность топлив к окислению и смолообразованию при их длительном хранении характеризуют индукционным периодом.
Индукционным периодом называется выраженное в минутах время, в течении которого испытуемый бензин в среде чистого кислорода под давлением 0,7 МПа и при температуре 100ºС практически не подвергается изменению.
Чем больше индукционный период, тем стабильнее бензин и тем дольше его можно хранить.
На повышенное содержания смол и органических кислот в бензине, указывает изменение цвета бензина. При осмолении бензин приобретает желтый цвет иногда с коричневатым оттенком.
Процесс окисления является самоускоряющимся. Каталитически ускоряющее на образование смол действует ржавчина и загрязнение тары, в которой хранится топливо. Попадание воды в бензин так же нежелательно, так как она растворяет ингибиторы и снижает их эффективность. В качестве присадок к бензинам препятствующих их осмолению, используют древесно-смолистый антиокислитель в количестве 0,050-0,015 % и антиокислитель ФЧ-16 в количестве 0,03-0,10 %.
Коррозионное воздействие бензинов на металлы.
Бензины как и другие нефтепродукты, должны обладать минимальным коррозионным воздействием на металлы. Коррозия металлов, из которых изготовлены детали системы питания, может появиться только в том случае, если в бензинах будут присутствовать следующие соединения: минеральные кислоты, щелочи, органические кислоты, сера и сернистые соединения.
Водорастворимые кислоты и щелочи обладают сильным коррозионным воздействием на металлы, вызывают интенсивный износ деталей двигателя и элементов системы питания. Водорастворимые кислоты оказывают воздействие, как на черные так и на цветные металлы, щелочи активно корродируют цветные металлы. По этой причине стандартами на автомобильные бензины не допускается содержание в них хотя бы следов водорастворимых кислот и щелочей.
Отсутствие в бензинах водорастворимых кислот и щелочей определяется по величине рН водной вытяжки бензина, для этого 50 мл бензина тщательно перемешивают с таким же объемом дистиллированной воды и полученную водную вытяжку испытывают на наличие кислот водным раствором метилоранжа, а щелочей – спиртовым раствором фенолфталеина.
Нейтральность водной вытяжки свидетельствует об отсутствии в нефтепродукте минеральных кислот и щелочей.
Органические кислоты. Стандартами допускается наличие в бензинах ограниченного количества органических (нафтеновых) кислот. Это объясняется тем , что органические кислоты обладают значительно меньшим коррозионным воздействием на металлы, чем минеральные. Однако они представляют опасность для цветных металлов (свинец, цинк), особенно в присутствии воды. Количество органических кислот в бензине постоянно возрастает вследствие окисления непредельных углеводородов.
Содержание органических кислот в топливах принято характеризовать кислотностью, под которой понимают количество щелочи КОН, выраженное в миллиграммах и потребное для нейтрализации всех нафтеновых кислот в 100 мл топлива.
Кислотность – количественная характеристика содержащихся в нефтепродукте органических кислот.
Сера и сернистые соединения.
Активные сернистые соединения отличаются особой коррозионной агрессивностью по этой причине их присутствие в топливах недопустимо.
Наличие активных сернистых соединений качественно обнаруживается испытанием на медную пластинку. Медную пластинку тщательно очищают и выдерживают в бензине (дизельном топливе) 3 часа при температуре 50º С. Если по истечении трех часов на поверхности медной пластины не появились черные, темно-коричневые или серо-стальные пятна, то нефтепродукт считается выдержавшим испытание. Отрицательная проба на коррозию медной пластинки указывает на то, что содержание сероводорода в бензине не более 0,0003, а элементарной серы не более 0,0015 %.
Неактивные сернистые соединения практически не корродируют металлы, однако, вызывают коррозию при сгорании топлива в цилиндрах двигателя. Стандартом на бензины допускается содержание в топливах ограниченного количества неактивных сернистых соединений.
Каждая марка бензина имеет условное обозначение, в которое входят буквы и цифры. Буква А означает, что бензин является автомобильным, буква И показывает, что определение детонационной стойкости произведено по исследовательскому методу, а цифры, следующие после дефиса, – минимальное октановое число, например АИ-93. Если октановое число определено по моторному методу, маркировка бензина содержит только букву А, и цифра – обозначает октановое число, например А-76.
Сейчас в Российской Федерации действует стандарт «Бензины для автомобильного транспорта», который включает в себя следующие марки бензинов: А-72(нэ), А-76(э), А-76(нэ), АИ-80(нэ), АИ-91(нэ), АИ-92(нэ), АИ-95(нэ), АИ-96(нэ), АИ-98(нэ).
ГОСТом не предусмотрен бензин АИ-93, вместо него предлагается АИ-91.
Бензины А-72, А-76, АИ-91, АИ-93 и АИ-95 изготавливаются зимнего и летнего видов.
С января 1999 г. в России введен новый государственный стандарт на бензины. Но не на все, а только на неэтилированные. Новый стандарт регламентирует четыре марки бензина: Normal – 80, Regular – 91, Premium – 95, Super – 98. Первый из них заменяет бензины А-76 и АИ-80. Экологические требования к ним (по ГОСТ Р 51105-95) жестче: содержание ТЭС не более 0,010 г/л, полностью запрещено использование железосодержащих антидетонаторов, содержание марганца ограничено на уровне 0,5 г/л для бензина Normal-80 и 0,18 г/л для Regular-91. Выпуск этилированных бензинов в России после 2003 г. резко сокращен.
Топлива для дизельных двигателей.
Дизельное топливо после бензина относится к самым массовым продуктам, применяемым на автомобильном транспорте. Дизельные двигатели по сравнению с карбюраторными обладают лучшей топливной экономичностью, удельный расход топлива у них примерно на 30 % ниже, чем у карбюраторных двигателей.
Дизельным топливом называется нефтяная фракция, основу которой составляют углеводороды с температурами кипения в пределах от 200 до 350º С.
По внешнему виду дизельное топливо представляет собой прозрачную, по сравнению с бензином более вязкую жидкость, окрашенную имеющимися в ее составе смолами в цвета от желтого до светло-коричневого. Дизельное топливо легче воды и практически в ней не растворяется.
Дизельное топливо производиться из отбензиненной нефти, благодаря чему увеличивается выход из нефти жидких топлив.
Технико-экономические требования к дизельным топливам.
Дизельное топливо должно:
· бесперебойно поступать в цилиндры двигателя при любых температурах (сохранять подвижность до возможно более низких температур) и обеспечивать легкий пуск двигателя:
· обеспечивать хорошее распыление и смесеобразование в цилиндрах двигателя;
· легко воспламеняться и плавно сгорать, обеспечивая мягкую и бездымную работу двигателя;
· быть в необходимой степени химически стабильными;
· обладать минимальным коррозионным воздействием на металлы;
· не содержать механических примесей и воды.
Вязкость дизельных топлив.
Вязкость дизельного топлива , равно как и других жидкостей, характеризует его подвижность, величину внутреннего трения, взаимную силу сцепления молекул. Она может быть выражена в единицах динамической и кинематической вязкости. Для дизельного топлива указывается кинематическая вязкость.
Динамическая вязкость измеряется величиной внутреннего трения. Единицей динамической вязкости является пуаз (П). динамическую вязкость в 1П имеет такая жидкость, у которой между двумя бесконечно тонкими слоями площадью 1 см 2 , находящимися друг от друга на расстоянии 1 см и перемещающимися с относительной скоростью 1 см/с, возникает сила равная 1 дине.
Кинематическая вязкость измеряется удельным коэффициентом внутреннего трения и представляет собой отношение динамической вязкости жидкости к ее плотности при температуре определения, т.е
где – плотность жидкости при той же температуре, г/см 3 .
Единицей кинематической вязкости является стокс (Ст). Кинематическую вязкость в 1 Ст имеет жидкость, у которой динамическая вязкость равна 1П и плотность 1 г/см 3 . Сотая доля стокса называется сантистоксом (сСт).вязкость дистиллированной воды при 20,2º С равна 1 сСт.
К основным требованиям по качеству дизельного топлива относиться прокачиваемость его по топливной системе, обеспечивающая подачу топлива в цилиндры двигателя в необходимом для заданного режима количестве.
Одним из показателей, которым оценивается прокачиваемость, является вязкость. Вязкость топлива влияет непосредственно на процесс образования смеси. От нее зависит надежность и ресурс топливной аппаратуры двигателя. Топливо с чрезмерно высокой вязкостью будет оказывать значительное сопротивление при движении по трубопроводам, через фильтры, отверстия форсунок и т.д. При использовании топлива с очень низкой вязкостью ухудшается смазка деталей насоса высокого давления и нарушается дозировка подачи топлива. Кроме того, при использовании топлива с малой вязкостью дальнобойность его струи оказывается недостаточной вследствие чрезмерного распыливания. Недостаточная вязкость приводит к неоднородности рабочей смеси, ухудшению процесса сгорания и перегреву форсунок. Капли высоковязкого топлива получаются крупными, с излишне большой дальнобойкостью образующегося из них факела, что ведет к замедленному их испарению и частичному оседанию на днище поршня, а также на стенки камеры сгорания.
Из выше сказанного следует, что топливо для быстроходных дизельных двигателей должно обладать оптимальной вязкостью (при 20º С) и находиться для летней эксплуатации в пределах 3,0-6,0, для зимней 1,8-6,0, для арктических условий – в пределах 1,5- 4,0 мм 2 /с.
Помутнение и застывание дизельных топлив.
Помимо вязкости прокачиваемость дизельного топлива оценивается температурами помутнения и застывания.
При понижении температуры наружного воздуха может быть нарушена подача дизельного топлива по системе питания, что происходит вследствие кристаллизации высокоплавких углеводородов, кристаллы которых постепенно оседают на фильтрах и прекращают подачу топлива к двигателю. Показателем, характеризующим начало кристаллизации в дизельном топливе углеводородов, является температура помутнения.
Температурой помутнения называется температура, при которой в безводном прозрачном дизельном топливе в процессе охлаждения и выделения микрокристаллов парафина и церезина появляются первые признаки помутнения, видимого невооруженным глазом.
При дальнейшем понижении температуры отдельные кристаллики, сращиваясь между собой, образуют ажурный кристаллический каркас, пронизывающий весь объем топлива. Потерю подвижности нефтепродуктов вследствие образования из кристаллизующихся углеводородов каркаса или структурной сетки принято называть застыванием.
Температурой застывания называется наивысшая температура, при которой дизельное топливо загустевает настолько, что не обнаруживает подвижности в течение 1 мин при наклоне стандартной пробирки с топливо на 45º.
Температура застывания является важнейшим показателем дизельного топлива и определяет возможность его использования при данной температуре воздуха. Минимальная температура воздуха, при которой может применяться дизельное топливо, должна быть выше температуры застывания на 10-15º С.
Температуры помутнения и застывания определяют с помощью специального прибора (Рис.76.).
Механические примеси и вода в дизельных топливах.
Дизельное топливо, как и бензины, не должно содержать механических примесей и воды.
При положительных температурах вода с топливом образует эмульсию, разрушающую фильтрующие элементы фильтров тонкой очистки, а при отрицательных температурах вода превращается в кристаллы льда, которые закупоривают топливные фильтры.
Содержание воды в нефтепродуктах, равное 0,025 %, принято называть следами. Такое количество воды допустимо только в летних дизельных топливах, которые разрешается применять в период с 1 мая по 1 октября.
Механические примеси могут попасть в дизельное топливо при его хранении, транспортировании и заправке автомобиля. Наибольший вред механические примеси наносят плунжерной паре насоса высокого давления, а так же форсунке. Механические примеси засоряют топливные фильтры, в результате чего затрудняется подача топлива.
Жесткая работа дизелей.
Топливо в цилиндры двигателя подается в жидкой фазе. С момента введения в цилиндр первой порции топлива начинается подготовка этой и последующих порций к сгоранию, на что требуется определенное время (t1)(Рис.77.), называемое периодом задержки самовоспламенения (период задержки самовоспламенения складывается из времени, затрачиваемого на распад топливной струи на капли, частичное их испарение и смешивание паров топлива с воздухом, а также времени, необходимого для завершения предпламенной реакции и формирования очагов самовоспламенения.).
Если величина периода задержки укладывается в определенные пределы, то в работе дизеля не происходит недопустимых отклонений от нормы. Следствием увеличения задержки самовоспламенения (t2) (Рис.77.) является очень интенсивное тепловыделение на первой стадии горения, в результате чего создается очень высокая скорость нарастания давления. Если при этом темп повышения давления превзойдет 0,6 МПа на один градус поворота коленчатого вала, то возникает ненормальная, а так называемая жесткая работа дизеля. При жесткой работе дизельного двигателя его детали работают с перегрузкой, что приводит к ускоренному их износу и поломкам, перерасходу топлива, дымному выпуску и снижению мощности.
Период задержки самовоспламенения складывается из времени, затрачиваемого на распад топливной струи на капли, частичное их испарение и смешивание паров топлива с воздухом, а также времени, необходимого для завершения предпламенной реакции и формирования очагов самовоспламенения.
Фракционный состав характеризует испаряемость дизельного топлива. У дизельных двигателей смесеобразование происходит за 20-40º поворота коленчатого вала и составляет всего лишь 0,001 – 0,004 с, т.е. примерно в 10-15 раз меньше, чем у карбюраторных двигателей. При таком ограниченном времени однородная качественная рабочая смесь может быть получена только при достаточно хорошем распыливании и испаряемости топлива.
Топливо с утяжеленным фракционным составом вследствие плохой его испаряемости приводит к несвоевременному воспламенению и плохому сгоранию, смыванию масла со стенок цилиндров, повышенному износу, ухудшению топливной экономичности.
В отличие от бензинов фракционный состав дизельного топлива определяется лишь температурами выкипания 50 и 96 % топлива. Это связано с тем. Что между температурой выкипания 10 % дизельного топлива и работой дизеля однозначной связи не установлено. При облегчении топлива ухудшается пуск дизелей, так как легкие фракции имеют худшую по сравнению с тяжелыми фракциями самовоспламеняемость. В связи с этим пусковые свойства дизельного топлива для автомобилей в какой-то степени определяет температура выкипания 50 % топлива. Температура выкипания 96 % топлива является температурой конца кипения и регламентирует содержание в топливе наиболее тяжелых фракций, увеличение которых ухудшает смесеобразование, снижает экономичность, повышает нагарообразование и дымность отработавших газов.
Самовоспламеняемость дизельных топлив.
Самовоспламеняемостью дизельного топлива называется способность его паров воспламеняться без источника зажигания.
Это свойство в значительной мере определяет подготовительную фазу процесса сгорания – период задержки самовоспламенения.
Метод оценки самовоспламеняемости дизельных топлив аналогичен методу оценки детонационной стойкости бензина. В том и другом случаях испытуемый образец сопоставляется с эталонными топливами на специальных незначительно различающихся друг от друга по устройству одноцилиндровых двигателях серии ИТ9 (ИТ9-3 – одноцилиндровый двигатель с переменной степенью сжатия ( = 7
23) метод совпадения вспышек по ГОСТ 3122-67).
Эталонную смесь составляют из двух углеводородов высокой степени частоты: цетан (нормальный гексадекан) С16Н34 и альфаметилнафталин С10Н7СН3. Самовоспламеняемость первого условно принята за 100 ед., а второго за 0 ед.
Цетановым числом топлива называется показатель его самовоспламеняемости, численно равный процентному (по объему) содержанию цетана в такой его смеси с альфаметилнафталином, которая равноценна данному топливу по самовоспламеняемости при испытании в стандартном двигателе.
Цетановые числа дизельных топлив зависят от их углеводородного состава, структуры и молекулярной массы. Наиболее высокие цетановые числа у парафиновых углеводородов, более низкие у нафтеновых и самые низкие у ароматических. Содержание парафиновых углеводородов в дизельных топливах ограничивается, что связано с высокими температурами их помутнения и застывания. Нафтеновые углеводороды присутствуют в дизельных топливах в значительных количествах, так как имеют удовлетворительные цетановые числа и температуры застывания.
Оптимальное цетановое число дизельных топлив находится в интервале 40-50. Применение топлива с цетановым числом менее 40 приводит к жесткой работе двигателя, а более 50 – нецелесообразно, так как снижается экономичность двигателя (из-за уменьшения полноты сгорания топлива), наблюдается дымный выпуск отработавших газов и перегрев форсунки. При возрастании цетанового числа улучшаются пусковые свойства топлива.
Повышение цетанового числа дизельных топлив достигается двумя способами: воздействием на их химический состав и введением специальных присадок.
Первый способ заключается в одновременном увеличении концентрации нормальных парафинов и снижении содержания ароматических углеводородов ( этот метод не приемлем для повышения цетанового числа зимних марок дизельного топлива, так как нормальные парафины имеют повышенные по сравнению с углеводородами других гомологических рядов температуры плавления.)
Второй способ основан на введении в дизельное топливо специальных кислородосодержащих присадок, к которым относятся органические перекиси, сложные эфиры азотной кислоты (этилнитрат, изопропилнитрат или цеклогексилнитрат) и др.
Эти присадки, являясь сильными окислителями, ускоряют зарождение и развитие реакций с образованием из топлива перекисей, от разложения которых ускоряется весь комплекс предпламенных процессов.
Химическая стабильность дизельных топлив.
Дизельные топлива, полученные при разгонки нефти с малым содержанием сернистых соединений обладают высокой химической стабильностью и способны храниться длительное время без изменения своих свойств (до пяти лет и более). Меньшей химической стабильностью обладают дизельные топлива, содержащие в своем составе значительное количество олефинов и меркаптанов. Количество фактических смол в таких топливах постоянно увеличивается, что является следствием окисления олефинов и оказывает негативное влияние на работу системы питания и повышает нагарообразование в двигателе. В связи с выше сказанным стандартами на дизельные топлива ограничивается содержание в них фактических смол (в зимних марках не более 30, а в летних не более 40 мг на 100 мл топлива).
Еще одним показателем, отражающим содержание в дизельном топливе олефинов, является йодное число.
Йодным числом называется количество йода в граммах, которое способно присоединиться к 100 г нефтепродукта.
Чем больше олефинов в топливе, тем больше йодное число. Йодное число должно быть не более 6 г йода на 100 г летних и зимних марок дизельного топлива.
Следующим показателем, характеризующим, химическую стабильность дизельных топлив является наличие в их составе меркаптанов, которые помимо значительного коррозионного воздействия на элементы системы питания (плунжерные пары и детали форсунок) способны к химическим превращениям, в том числе и к реакциям окисления с образованием смол. Принимая во внимание большую коррозионную активность и малую химическую стабильность меркаптанов, разработана специальная методика для количественного определения в дизельных топливах и бензинах так называемой меркаптановой серы, т.е. выраженную в процентах долю топлива, которая приходиться на имеющуюся в меркаптанах серу. Содержание меркаптановой серы в бензинах и дизельных топливах не должно превышать 0.01 %.
Коррозионное воздействие дизельных топлив на металлы.
Коррозионные свойства дизельных топлив, как и бензинов, зависят от содержания в них серы, сернистых и кислородных соединений.
Присутствие водорастворимых кислот и щелочей в дизельных топливах не допускается.
Содержание органических кислот – кислотность не должна превышать 5 мг КОН на 100 мл топлива.
Износ деталей дизельных двигателей примерно пропорционален содержанию в топливе общей серы. В зависимости от этого показателя отечественные топлива для быстроходных дизелей делятся на два вида: первый – с содержанием серы до 0,2 %; второй – с содержанием серы до 0,5 %.
Склонность дизельного топлива к нагарообразованию оценивается его зольностью и коксуемостью. Зольность топлива характеризуется содержанием в нем несгораемых неорганических соединений, которые повышают абразивные свойства топлива.
Коксуемостью называют свойство топлива образовывать углистый остаток при нагреве без доступа воздуха.
Зольность и коксуемость топлива регламентируется в стандарте.
Марки дизельных топлив.
При эксплуатации автомобилей используются дизельные топлива трех марок: Л (летнее), З (зимнее), А (арктическое). В ГОСТ 305-82 имеется указание , что все три марки топлива получают из продуктов переработки нефти, в которые разрешается добавка присадок, допущенных к применению в установленном порядке. Все компоненты дизельных топлив обладают высокой стабильностью, поэтому для всех марок установлен гарантийный срок хранения в 5 лет. По общему содержанию серы каждая марка делится на две подгруппы. Общее содержание серы в процентах обязательно указывается в маркировке. В условное обозначение топлива марки А должны входить значение массовой доли серы и температура вспышки (Температура вспышки ограничивает содержание в топливе наиболее легких фракций и характеризует его огнеопасность. Температура вспышки – это та наименьшая температура, до которой нужно нагреть дизельное топливо в закрытом тигле, чтобы его пары образовали с воздухом смесь, вспыхивающую при поднесении к ней пламени.), например Л-0,2-40; топливо марки З – массовая доля серы и температура застывания, например З-0,2-35; топливо марки А – массовая доля серы.
Все марки дизельных топлив, могут применяться для любого автомобильного дизеля. Выбор той или иной марки зависит только от времени года, климатических условий района и качества используемого масла. Топлива подгруппы II разрешается применять только для автомобильных дизелей, в которых используется масло с присадкой, сообщающей ему щелочную реакцию и уменьшающей коррозию деталей продуктами сгорания сернистых соединений.
В основе выбора марки для различных климатических условий лежит эксплуатационная оценка дизельных топлив по их низкотемпературным показателям. Летнее (Л) – для эксплуатации при температуре окружающего воздуха 0ºС и выше; зимнее (З) – для эксплуатации при -20º С и выше (с температурой застывания не выше -45º С); арктическое (А) – для эксплуатации при -50º С и выше (с температурой застывания -55º С).
Для применения в летний период при температуре окружающего воздуха до 5º С выпускаются дизельные топлива утяжеленного фракционного состава (УФС), которое имеет более высокую температуру конца кипения (на 20-30º С), что позволяет увеличить ресурс дизельного топлива на 5-8 % (ТУ 38.001.355-86).
Топливо расширенного фракционного состава (РФС), выкипающее в пределах 60-400ºС, позволяет увеличить ресурсы дизельного топлива до 30 % и имеет цетановое число около 40 (ТУ 38.401.652-87).
Для улучшения экологической обстановки в России начиная с 1991 г. организовано производство летнего экологически чистого дизельного топлива (ТУ 38.101.1348-90), которое отличается низким содержанием серы.
Установлены две марки дизельного летнего экологически чистого топлива:
ДЛЭЧ-В – с ограниченным содержанием ароматических углеводородов (один вид топлива с массовой долей серы не более 0,05 %, другой – не более 0, 1 %);
ДЛЭЧ – без ограничения содержания ароматических углеводородов (один вид топлива с массовой долей серы не более 0,05 %, другой – не более 0, 1 %).
ДЛЭЧ-В и ДЛЭЧ применяют при температуре окружающего воздуха до -5º С.
Для использования в районах Крайнего Севера и Арктики вырабатывается арктическое экологически чистое дизельное топливо (ТУ 38.401.5845-92), которое имеет температуру застывания -55ºС и содержит ограниченное количество ароматических углеводородов (5-10 %).
Для эксплуатации техники в зимний период при температуре до -15ºС вырабатываются дизельные зимние топлива с депрессорной присадкой ДЗп (ТУ 38.101.889-81), которые изготавливаются на основе летних дизельных топлив с содержанием серы 0,2 или 0,5 %. Дизельное топливо ДЗп-15/25 рекомендовано для применения при температуре наружного воздуха до -25º С.
На экспорт вырабатывается дизельное топливо ДЛЭ и ДЗЭ (ТУ 38.001.162-85) с содержанием серы 0,2 %.
В районах газовых месторождений Западной Сибири и Крайнего Севера допущены к применению газоконденсатные широкофракционные летнее (ГШЛ), зимнее (ГШЗ) и арктическое (ГША) дизельные топлива.
Автомобильные газовые топлива и топлива ненефтяного происхождения.
В настоящее время широкое применение находят альтернативные виды топлива – природный газ и сжиженный нефтяной газ (пропан-бутан). В качестве топлива для автомобилей планируется также использовать жидкий водород, спирты, синтетическое топливо.
Автомобильные газовые топлива должны отвечать следующим требованиям:
· хорошая смешиваемость с воздухом для образования однородной горючей смеси;
· высокая калорийность образуемой горючей смеси;
· отсутствие детонации при сгорании в цилиндрах двигателя;
· минимальное содержание смолистых веществ и механических примесей, а также веществ, вызывающих коррозию поверхностей деталей, окисление и разжижение масла в картере двигателя;
· минимальное образование токсичных и канцерогенных веществ в продуктах сгорания;
· способность сохранять состав и свойства во времени и объеме;
· невысокая цена производства и транспортировки.
Природный газ – это полезное ископаемое (газ метан).
Природный газ как топливо для автомобилей имеет ряд преимуществ перед бензином и сжиженным нефтяным газом на пропан-бутане:
· двигатель на природном газе не более опасен, чем бензиновый, и менее, чем на пропан-бутане: в первую очередь благодаря тому, что природный газ легче воздуха и при утечке не скапливается, а поднимается вверх, удаляется по вентиляционным каналам, не создавая взрывоопасной смеси;
· автомобиль на сжатом газе намного чище бензинового. Большую часть выбросов составляют безвредные водяные пары. Количество двуокиси углерода в выхлопных газах ниже на 25 %, и моноокиси углерода (СО) – в несколько раз;
· запасы природного газа в природе намного больше, чем нефтепродуктов – бензина и пропан-бутана;
· сжатый метановый газ гораздо дешевле бензина и пропан-бутана;
· природный газ имеет более высокое октановое число, чем бензин, что позволяет повышать степень сжатия и, как следствие, мощность двигателя;
· использование природного газа в качестве топлива позволяет увеличить срок службы двигателя на 50-70 %, срок службы свечей – на 30-40 %, расход масла снижается благодаря увеличению периодичности его замены в 2-3 раза.
К недостаткам природного газа как автомобильного топлива можно отнести:
· переводится в сжиженное состояние только при очень низкой температуре (-163º С);
· высокая стоимость баллонов для хранения сжатого газа по сравнению с обычными бензобаками, а также с баллонами для сжиженного пропан-бутанового газа.
Природный газ, используемый в качестве топлива для автомобилей находиться в болонах в сжатом состоянии под большим давлением (до 20МПа), что требует применения высокопрочных баллонов, имеющих значительную массу и изготовленных из высококачественных сталей. В связи с этим полезная грузоподъемность автомобилей снижается на 15-20 % по сравнению с грузоподъемностью базовых автомобилей. Запас хода газобаллонных автомобилей работающих на сжатом природном газе, ниже запаса хода автомобилей, работающих на бензине и сжиженном газе, в 1,5 -2 раза.
Основными компонентами сжиженных газов являются два углеводорода: пропан С3Н8, бутан С4Н10 и их смеси. Критическая температура пропана +97º С, а бутана +126º С, поэтому эти углеводороды при температурах ниже критических и незначительном увеличении давления можно перевести в жидкое состояние (при +20º С для сжижения пропана и бутана требуются давления, равные соответственно 0,716 и 0,103 МПа). Для хранения сжиженных газов газобаллонные автомобили имеют баллоны объемом до 250 л, рассчитанные на рабочее давление 1,57 МПа. Этого давления достаточно, для того чтобы поддерживать чистый пропан в жидком виде при температурах ниже +48,5º С.
Сжиженный нефтяной пропан-бутановый газ обладает рядом преимуществ перед бензином:
· увеличивается срок службы моторного масла в 1,5-2 раза, благодаря отсутствию растворяющих и смазывающих свойств газа;
· практически не содержит серы, которая вызывает сильную коррозию деталей и износ;
· не накапливаются смолистые отложения в топливной системе и камере сгорания (сжиженный нефтяной газ растворяет их), улучшается работа системы зажигания и возрастает срок службы свечей зажигания на 40 %;
· снижается токсичность выхлопных газов: окиси углерода (СО) в 2-3 раза, окиси азота (NO) 1,2 раза, углеводородов (СН) в 1,3-1,9 раза, обеспечивается сохранность катализаторов;
· уменьшается вероятность детонации двигателей (у газа более высокое октановое число – около 105), улучшается динамика его работы, в полтора раза увеличивается межремонтный пробег и к тому же снижается уровень шума при работе на 2-3 дБ;
· газовое топливо более дешевое (примерно в 1,5-2 раза) в сравнении с бензином.
Пропан, бутан и их смесь при относительно небольшом давлении находятся в баллоне, как правило, в жидкой и частично газообразной формах. Сам газ поддерживает давление в баллоне, которое зависит от соотношения пропан-бутан и окружающих условий (температуры, атмосферного давления). Жидкость в резервуаре близка к точке кипения. Она испаряется по мере расхода газа, поддерживая постоянное давление. Чтобы достичь этого эффекта производители зимой увеличивают в смеси содержание пропана, так как он более летуч. Недостатком сжиженного газа является более низкая по сравнению с бензином теплотворная способность (25,45 кДж/дм 3 против 31,57 кДж/дм 3 у бензина).
ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта» устанавливает следующие марки сжиженных нефтяных газов: ПА – пропан автомобильный для применения в зимний период при температуре от -20 до -30º С; ПБА – пропан-бутан автомобильный для применения при температуре не ниже -20º С.
Топлива ненефтяного происхождения.
В последнее время достаточно широко ведутся работы по использованию в качестве топлива для автомобильной техники метилового и этилового спиртов. Метиловый спирт (метанол) получают переработкой угля, природного газа отходов лесоперерабатывающей промышленности. Этиловый спирт (этанол) вырабатывают из сахарного тростника, свеклы и зерновых культур.
Наиболее перспективным сырьем для производства метанола является каменный уголь.
Метанол и эталон, используемые в качестве топлива для автомобильных двигателей обладают высокой детонационной стойкостью и низкой по сравнению с бензином теплотворной способностью (20934 кДж/кг). Существенным недостаткам метанола является низкая испаряемость при температуре ниже 10ºС, повышенная гигроскопичность, а также высокая стоимость (в 1,5 – 2 раза дороже бензина). Учитывая эти недостатки, применение метанола в качестве самостоятельного топлива без изменения конструкции топливной системы автомобиля не является целесообразным. Метанол можно использовать в качестве добавки к бензину, которая улучшает ряд его эксплуатационных свойств и увеличивает ресурс топлива.
Этиловый спирт как автомобильное топливо превосходит метанол по ряду показателей и может применяться в двигателях как в смеси с бензином, так и самостоятельно.
В настоящее время активно ведутся работы по применению в качестве автомобильного топлива водорода, или его смеси с бензином. Теплотворная способность водорода равна 118045 кДж/кг, что в 2,7 раза превышает теплотворную способность бензина.
Основной проблемой при использовании водорода в качестве автомобильного топлива, является решение вопроса хранения этого горючего на борту автомобиля в количестве, обеспечивающем пробег, равноценный пробегу автомобиля, работающего на традиционном нефтяном топливе, а также снижение себестоимости его производства.
Существует несколько вариантов использования водорода в качестве автомобильного топлива:
· размещение баллонов со сжатым водородом (давление в баллоне до 20 МПа) на автомобиле, что требует чрезвычайно высокой плотности в соединениях топливной системы. При соотношении водорода с кислородом 2:1 образуется взрывоопасная смесь, поэтому незначительная утечка может привести к взрыву;
· применение в качестве топлива сжиженного водорода. Температура сжиженного водорода -253º С, что требует применения криогенных баллонов с двойными стенками для его хранения и транспортирования;
· использовать в качестве автомобильного топлива гидриды. Некоторые металлы и их сплавы способны разместить между своими атомами атомы водорода. Выделение водорода происходит при подогреве гидридов горячей жидкостью из системы охлаждения или непосредственно отработавшими газами. Для зарядки гидридного аккумулятора через восстановленный металлический компонент пропускают водород под небольшим давлением. Процесс зарядки может повторяться несколько тысяч циклов без ухудшения энергоемкости аккумулятора;
· перспективным способом получения водорода (на самом автомобиле) является использование метилового спирта. При его испарении в присутствии катализатора происходит реакция с водяным паром, в результате которой выделяется водород и двуокись углерода.
К преимуществам использования водорода в качестве автомобильного топлива следует отнести его высокую детонационную стойкость, что позволяет увеличить степень сжатия.
Источник