Методы получения аморфных металлов
Сверхвысокие скорости охлаждения жидкого металла для получения аморфной структуры можно реализовать различными способами. Общим в них является необходимость обеспечения скорости охлаждения не ниже 10 6 К/с. Известны методы катапультирования капли на холодную пластину, распыление струи газом или жидкостью, центрифугирование капли или струи, расплавление тонкой пленки поверхности металла лазером с быстрым отводом тепла массой основного металла, сверхбыстрое охлаждение из газовой среды и др. Использование этих методов позволяет получать ленту различной ширины и толщины, проволоку и порошки.
Получение ленты. Наиболее эффективными способами промышленного производства аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) поверхностях вращающихся барабанов или прокатка расплава между холодными валками, изготовленными из материалов с высокой теплопроводностью. Принципиальные схемы этих методов приведены на рисунке 12.2.
Рисунок 12.2 – Методы получения тонкой ленты путем закалки из расплава: а – центробежная закалка; б – закалка на диске; в – прокатка расплава; г — центробежная закалка; д – планетарная закалка на диске
Расплав, полученный в индукционной печи, выдавливается нейтральным газом из сопла и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника). Различие состоит том, что в методах центробежной закалки и закалки на диске расплав охлаждается только с одной стороны. Основной проблемой является получение достаточной степени чистоты внешней поверхности, которая не соприкасается с холодильником. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты, что особенно важно для аморфных лент, используемых для головок магнитной записи.
Для каждого метода имеются свои ограничения по размерам лент, поскольку есть различия и в протекании процесса затвердевания, и в аппаратурном оформлении методов. Если при центробежной закалке ширина ленты составляет до 5 мм, то прокаткой получают ленты шириной 10 мм и более. Метод закалки на диске, для которого требуется более простая аппаратура, позволяет в широких пределах изменять ширину ленты в зависимости от размеров плавильных тиглей. Данный метод позволяет изготавливать как узкие ленты шириной 0,1 – 0,2 мм, так и широкие – до 100 мм, причем точность поддержания ширины может быть ± 3 мкм. Разрабатываются установки с максимальной вместимостью тигля до 50 кг.
Получение проволоки. Для получения тонкой аморфной проволоки используют разные методы вытягивания волокон из расплава (рисунок 12.3).
Рисунок 12.3 – Методы получения тонкой проволоки, закаленной из расплава: а – протягивания расплава через охлаждающую жидкость (экструзия расплава); б – вытягивание нити из вращающегося барабана; в – вытягивание расплава в стеклянном капилляре; 1 – расплав; 2 – охлаждающая жидкость; 3 – стекло; 4 – форсунка; 5 – смотка проволоки
В первом методе (рисунок 12.3, а) расплавленный металл протягивается в трубке круглого сечения через водный раствор солей. Во втором (рисунок 12.3, б) – струя расплавленного металла падает в жидкость, удерживаемую центробежной силой на внутренней поверхности вращающегося барабана. Затвердевшая нить сматывается затем из вращающейся жидкости. Известен метод, состоящий в получении аморфной проволоки путем максимально быстрого вытягивания расплава в стеклянном капилляре (рисунок 12.3, в). Этот метод также называют методом Тейлора. Волокно получается при протягивании расплава одновременно со стеклянной трубкой, при этом диаметр волокна составляет 2 – 5 мкм. Главная трудность здесь состоит в отделении волокна от покрывающего его стекла, что, естественно, ограничивает составы сплавов, аморфизируемых данным методом.
Получение порошков. Для производства порошков аморфных сплавов можно воспользоваться методами и оборудованием, применяемым для изготовления обычных металлических порошков.
На рисунке 12.4 показаны схемы несколько методов, позволяющих в больших количествах получать аморфные порошки.
Рисунок 12.4 – Методы получения аморфных порошков: а – метод распыления (спрей-метод); б – кавитационный метод; в – метод распыления расплава вращающимся диском; 1 – порошок; 2 – исходное сырье; 3 – форсунка; 4 – охлаждающая жидкость; 5 – охлаждаемая плита
Среди них в первую очередь следует отметить хорошо зарекомендовавшие себя методы распыления (рисунок 12.4, а). Известно изготовление аморфных порошков кавитационным методом, реализуемым прокаткой расплава в валках, и методом распыления расплава вращающимся диском. В кавитационном методе (рисунок 12.4, б) расплавленный металл выдавливается в зазоре толщиной 0,2 – 0,5 мм между двумя валками, изготовленными, например, из графита или нитрида бора. Расплав выбрасывается валками в виде порошка, который попадает на охлажденную плиту или в охлаждающий водный раствор. Метод распыления вращающимся диском (рисунок 12.4, в) в принципе аналогичен ранее описанному методу изготовления тонкой проволоки, но здесь расплавленный металл, попадая в жидкость, разбрызгивается за счет ее турбулентного движения. С помощью этого метода получают порошок в виде гранул диаметром около 100 мкм.
Источник
МЕТОДЫ ПОЛУЧЕНИЯ АМОРФНЫХ МЕТАЛЛОВ
ПРЕЗЕНТАЦИЯ
по дисциплине: Процессы получения наночастиц и наноматериалов
на тему: «Получение наноматериалов с использованием твердофазных превращений»
Студент гр. 4301-11
СОДЕРЖАНИЕ
ВВЕДЕНИЕ | |
1. | МЕТОДЫ ПОЛУЧЕНИЯ АМОРФНЫХ МЕТАЛЛОВ |
1.1. | МЕТОД ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ АМОРФНЫХ ПЛЁНОК ИЗ РАСТВОРОВ ЭЛЕКТРОЛИТОВ |
1.2. | АМОРФИЗАЦИЯ КРИСТАЛЛИЧЕСКОГО СОСТОЯНИЯ ПУТЁМ ВВЕДЕНИЯ В КРИСТАЛЛЫ БОЛЬШОГО КОЛИЧЕСТВА ДЕФЕКТОВ |
1.3. | ИНТЕНСИВНАЯ ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ |
1.4. | ЗАКАЛКА ЖИДКОГО СОСТОЯНИЯ |
2. | ДОСТОИНСТВА И НЕДОСТАТКИ МЕТОДА ПОЛУЧЕНИЯ НАНОМАТЕРИАЛОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНЫХ ПРЕВРАЩЕНИЙ |
ЗАКЛЮЧЕНИЕ | |
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ |
ВВЕДЕНИЕ
В последнее время разработан ряд методов получения наноматериалов, в которых диспергирование осуществляется в твердом веществе без изменения агрегатного состояния.
Контролируемая кристаллизация из аморфного состояния является одним из способов получения массивных наноматериалов. Метод заключается в получении аморфного материала, например, закалкой из жидкого состояния, а затем его кристаллизацией в условиях контролируемого нагрева.
Аморфными называют металлы, находящиеся в твёрдом состоянии, у которых в расположении атомов отсутствует дальний порядок, характерный для металлов в обычном, т.е. кристаллическом, состоянии. Для характеристики металлов в таком состоянии используются также термины «металлическое стекло», реже – «некристаллические металлы». Аморфное состояние является предельным случаем термодинамической нестабильности твёрдых металлических систем, противоположным термодинамическому состоянию бездефектного кристалла.
На протяжении тысячелетий человечество использовало твёрдые металлы исключительно в кристаллическом состоянии. Лишь в конце 30-х годов ХХ века появились попытки получения методом вакуумного напыления некристаллических металлических покрытий в виде тончайших плёнок. В 1950 году была получена аморфная плёнка сплава Ni–P методом электроосаждения из растворов. Такие плёнки использовали в качестве твёрдых, износостойких и коррозионностойких покрытий.
Положение существенно изменилось, когда в 1960 году был открыт способ получения аморфных металлических сплавов путём закалки жидкого состояния, а в 1968 году – способ закалки расплава на поверхности вращающегося диска с получением аморфной ленты большой (сотни метров) протяженности. Это открыло возможность крупномасштабного производства аморфных металлов при их относительно низкой стоимости и обусловило взрывоподобный рост исследований в области аморфных сплавов.
Сегодня порядка 80% промышленных аморфных сплавов производятся ради их уникальных магнитных свойств. Они применяются в качестве магнитомягких материалов, сочетающих изотропность свойств, высокую магнитную проницаемость, высокую индукцию насыщения, малую коэрцитивную силу. Их применяют для изготовления магнитных экранов, магнитных фильтров и сепараторов, датчиков, записывающих головок и т.п. Сердечники трансформаторов, изготовленные из аморфных сплавов, характеризуются весьма малыми потерями на перемагничивание благодаря узкой петле гистерезиса, а также высокому электросопротивлению и малой толщине аморфной ленты, что уменьшает потери, связанные с вихревыми токами.
В последнее время, примерно с середины 90-х годов ХХ века, существенно возрос интерес к структурным элементам различных материалов, в том числе металлов, имеющим наноразмерный масштаб (1…100 нм). При таких размерах структурных образований, в частности кристаллов, существенно возрастает доля поверхностных частиц, обладающих отличным от расположенных внутри объёмов частиц взаимодействием. В результате свойства материалов, образованных такими частицами, могут значительно отличаться от свойств материалов такого же состава, но имеющих более крупные размеры структурных единиц. Для характеристики таких материалов и способов их производства появились и широко употребляются специальные термины наноматериалы, нанотехнологии, наноиндустрия.
В современном понимании наноматериалы – это разновидность продукции в виде материалов, содержащих структурные элементы нанометровых размеров, наличие которых обеспечивает существенное улучшение или появление качественно новых механических, химических, физических, биологических и других свойств, определяемых проявлением наномасштабных факторов. А нанотехнологии – это совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных (1…100 нм) элементов для получения объектов с новыми химическими, физическими, биологическими свойствами. Соответственно наноиндустрия – это производство наноматериалов, реализующее нанотехнологии. Применительно к металлам термином «нанокристаллические» принято называть металлы, размеры кристаллов которых укладываются в приведённый выше нанометровый диапазон.
Разработка наноматериалов, нанотехнологий и использование объектов с управляемыми наноразмерными структурами стали возможными в значительной степени благодаря появлению исследовательских приборов и прямых методов исследования объектов атомного уровня. Например, современные просвечивающие электронные микроскопы с увеличением порядка 1,5х10 6 позволяют визуально наблюдать атомную структуру.
Существуют разные способы получения наноструктурированных материалов, в том числе металлов. Например, наноструктуру можно получить в объёмной металлической заготовке путём измельчения обычных кристаллов до наноразмерных. Этого можно достичь, в частности, путём интенсивной пластической деформации. Однако методы измельчения структуры путём деформации не позволяют получать нанокристаллические металлы в промышленных масштабах и не относятся к традиционным металлургическим технологиям.
В то же время нанокрсталлическую, как и аморфную, структуру металла можно получить и традиционными металлургическими способами, в частности быстрым охлаждением расплава. В зависимости от условий закалки жидкого состояния возможны три варианта формирования структуры:
· нанокристаллизация непосредственно в процессе закалки расплава (предельный случай обычной ускоренной кристаллизации, приводящий к получению не просто мелкозернистой, а наноструктуры);
· в процессе закалки расплава происходит частичная кристаллизация, так что образуется композитная аморфно-кристаллическая структура;
· при закалке формируется аморфная структура, а нанокристаллическая структура образуется при последующем отжиге.
Нанокристаллические, как и аморфные, металлы, получаемые методом закалки жидкого состояния, находят применение также преимущественно в качестве магнитных и электротехнических материалов с уникальными свойствами. Они используются в качестве магнитомягких и магнитотвёрдых материалов, проводников, полупроводников, диэлектриков и т.д.
В частности, широкое применение нашли магнитомягкие сплавы типа файнмет (Finemet). Это нанокристаллические сплавы системы Fe–Si–B с добавками Cu и Nb или других тугоплавких металлов. Сплавы получают путём частичной кристаллизации аморфного состояния. Их структура состоит из ферромагнитных кристаллитов размером 10…30 нм, распределённых в аморфной матрице, которая составляет от 20 до 40% объёма. Сплавы типа файнмет обладают очень низкой коэрцитивной силой, высокой магнитной проницаемостью и намагниченностью, малыми потерями на перемагничивание, превосходя по своим характеристикам другие магнитомягкие сплавы, в том числе и аморфные.
Достаточно широко применяются также магнитотвёрдые нанокристаллические сплавы систем Fe–Nd–B, Fe–Sm–N. Поскольку многие магнитные материалы (Fe–Si, Fe–Nd–B) хрупки, то уменьшение величины зерна не только улучшает их магнитные характеристики, но и повышает пластичность.
МЕТОДЫ ПОЛУЧЕНИЯ АМОРФНЫХ МЕТАЛЛОВ
Получение аморфных металлов возможно дроблением исходного кристаллического тела с получением аморфной структуры (путь «сверху вниз»). Путь предполагает нарушение регулярного расположения атомов в кристаллическом теле в результате внешних воздействий на кристалл и превращение твёрдого кристаллического тела в твёрдое аморфное.
К настоящему времени известно несколько технических способов реализации этих путей (рис.1). Поскольку аморфный металл с термодинамической точки зрения представляет собой крайне неравновесную систему, обладающую большой избыточной энергией, то его получение, в отличие от получения кристаллического металла, требует проведения неравновесных процессов. На этом рисунке равновесные процессы фазовых превращений металла представлены сплошными стрелками, а неравновесные процессы получения аморфного металла – штриховыми.
Рис.1. Методы достижения равновесных и неравновесных состояний металлов
Как следует из приведённой схемы, термодинамически неравновесный аморфный (и нанокристаллический) металл можно получить из любой равновесной фазы:
· конденсацией из газовой фазы. С некоторыми оговорками к этой группе могут быть отнесены и методы электролитического осаждения аморфных плёнок из растворов электролитов;
· аморфизацией кристаллического состояния путём введения в кристаллы большого количества дефектов;
· закалкой жидкого состояния из металлического расплава.
Два первых метода получения аморфных металлов – из газовой фазы и кристаллических металлов – появились ещё в первой половине прошлого века и используются относительно давно, но они не относятся к металлургическим технологиям.
Источник