Способы получения алифатических аминов
В молекулах аминах атом азота находится в низшей степени окисления -3:
Степени окисления атома азота в молекулах аммиака и метиламина
Поэтому многие способы получения аминов основаны на процессах восстановления азотсодержащих соединений других классов.
1. Восстановление нитросоединений
Наиболее общим методом получения первичных аминов является восстановление нитросоединений.
Восстановление осуществляется атомарным водородом (т.е. водородом, получаемым в момент его выделения), который является более сильным восстановителем, чем молекулярный:
Для получения атомарного водорода используется реакция цинка или железа в кислой среде (с соляной кислотой), алюминий в щелочной среде (с гидроксидом натрия).
Нитросоединения при восстановлении образуют первичные амины.
Для получения алифатических аминов этот способ используется редко, но важен для получения ароматических аминов и лег в основу промышленного производства анилина.
Реакция получения анилина открыта в 1842 г. профессором Н.Н. Зининым (реакция Зинина). В качестве восстановителя Зинин использовал сульфид аммония:
2. Взаимодействие алкилгалогенидов (галогеналканов) с аммиаком (алкилирование по Гофману)
Алкилирование аммиака — основной способ получения аминов. Эта реакция была открыта немецким химиком А.В. Гофманом и является наиболее простым методом синтеза первичных, вторичных и третичных аминов.
Получение аминов происходит путем замещения атома водорода аммиака на углеводородный радикал:
Если алкилгалогенид в избытке, то первичный амин может вступать в реакции алкилирования (выполняя роль аммиака), превращаясь во вторичный или третичный амин.
Смеси аминов разделяют перегонкой, используя большие различия в температурах кипения.
3. Реакция аммиака со спиртом (аммонолиз спиртов)
В промышленности алкилирование аммиака в большинстве случаев проводится не галогеналканами, а спиртами, в молекулах которых происходит нуклеофильное замещение ОН-группы на аминогруппу.
Пропусканием паров спирта и аммиака при температуре 300-500 0 С над катализатором получают смесь первичных, вторичных и третичных спиртов:
4. Действие щелочей на соли алкиламмония
Лабораторный способ
Вытеснением аминов из их солей при нагревании более сильным основанием можно получить первичные, вторичные и третичные амины. Щелочь как более сильное основание вытесняет амин, который выделяется при нагревании в виде газа.
5. Восстановление нитрилов
Первичные амины могут быть получены восстановлением нитрилов тетрагидридоалюминатом (III) лития LiAlH4 в диэтиловом эфире:
Этим способом в промышленности получают гексаметилендиамин, который используется в производстве полиамидного волокна нейлон.
6. Восстановление амидов
Амиды карбоновых кислот восстанавливаются до аминов алюмогидридом лития LiAlH4. Из соответствующих амидов могут быть получены первичные, вторичные и третичные амины.
Источник
Способы получения алифатических аминов
четвертичные аммониевые соли
По типу гибридизации атома углерода, связанного с азотом выделяют следующие группы аминов.
К этой группе относятся алкиламины, а также алкенил- и алкиниламины, в которых кратная связь удалена от атома азота. Их объединяют под названием алифатические амины. В состав этой группы входят также циклические амины, содержащие атом азота в цикле, которые являются гетероциклическими соединениями.
К этой группе принадлежат производные алкенов с атомом азота у атома углерода, образующего двойную связь – енамины (виниламины) и амины, содержащие атом азота, связанный с ароматическим кольцом — ароматические амины (ариламины).
Названия аминов образуют, добавляя к слову амин названия связанных с атомом азота углеводородных радикалов.
В другом варианте номенклатуры за основу названия принимают название родоначальной структуры (самой длинной углеродной цепи, непосредственно связанной с атомом азота) с добавлением суффикса “амин”.
В этом случае вторичные и третичные амины называют как N-замещенные производные первичных аминов.
Если молекула содержит другие функциональные группы, обозначаемые в суффиксе, то аминогруппу обозначают префиксом “амино”.
Названия диаминов образуют от названий соответствующих двухвалентных радикалов или названия родоначальной структуры с добавлением суффикса “диамин”.
Многие ароматические амины имеют тривиальные названия.
Циклические амины называют, используя номенклатуру гетероциклических соединений или, добавляя к названию двухвалентного углеводородного радикала суффикс “имин”.
Для аминов характерна изометрия углеродного скелета, изомерия положения аминогруппы и изомерия между первичными, вторичными и третичными аминами.
1) Алкилирование аммиака и аминов.
Аммиак взаимодействуют с алкилгалогенидами RX и другими алкилирующими реагентами (алкилсульфатами, диалкилсульфатами) с образованием на первой стадии соли алкиламмония, которая в равновесной реакции с избытком аммиака дает алкиламин. Алкиламин далее вступает в реакцию c алкилгалогенидом с образованием продукта диалкилирования и т.д. Таким образом последовательно образуются триалкиламин и соль тетраалкиламмония.
Реакция используется в основном для синтеза третичных аминов и тетраалкиламмониевых солей, так как первичные и вторичные амины, будучи более сильными нуклеофилами, чем аммиак, реагируют далее, сами предпочтительно атакуя субстрат. Приемлемые выходы первичных аминов получают при использовании большого избытка аммиака, а вторичных аминов – при большом избытке первичного амина.
Спирты алкилируют аммиак и амины в присутствии катализаторов дегидратации (Al2O3, SiO2) при 300-500 0 C. В этом случае также образуется смесь продуктов моно-, ди- и триалкилирования.
Метод используется для получения низших алифатических аминов в промышленности.
2) Синтез первичных аминов по Габриэлю
Алкилирование фталимида калия алкилгалогенидами с последующим щелочным гидролизом или гидразинолизом N-алкилфталимида позволяет получать первичные амины без примеси вторичных и третичных. Лучше использовать протекающий в мягких условиях гидразинолиз, приводящий к образованию не растворимого в реакционной среде циклического гидразида.
3) Восстановление азотсодержащих органических соединений.
Нитрилы при восстановлении дают первичные амины. В промышленности процесс осуществляют путем каталитического гидрирования.
В препаративных целях используют восстановление алюмогидридом лития.
Введение цианогруппы (например, путем нуклеофильного замещения) и ее восстановление – синтетический прием, позволяющий нарастить углеродную цепь на один атом С.
Амиды карбоновых кислот восстанавливаются до аминов алюмогидридом лития. Из соответствующих амидов могут быть получены первичные, вторичные и третичные амины.
Восстановление азотсодержащих производных альдегидов и кетонов – оксимов и гидразонов – дает возможность превращения карбонильных соединений в первичные амины.
Для восстановления используют каталитическое гидрирование, комплексные гидриды металлов (LiAlH4).
Нитросоединения могут быть восстановлены до первичных аминов.
В качестве восстановителей чаще всего используют металл (Fe, Zn, Sn) и кислоту; алюмогидрид лития. В алифатическом ряду метод не находит широкого применения из-за ограниченной доступности алифатических нитросоединений по сравнению с ароматическими.
Восстановление азидов дает первичные амины.
Исходные азиды легко могут быть получены из алкилгалогенидов или сульфонатов путем нуклеофильного замещения.
4) Восстановительное аминирование карбонильных соединений.
Взаимодействие альдегидов и кетонов с аммиаком в присутствии восстановителя приводит к первичным аминам.
При использовании вместо аммиака первичного амина продуктом реакции будет вторичный амин.
Процесс протекает через промежуточное образование имина с его последующим восстановлением в амин.
Восстановительное аминирование с использованием в качестве восстановителя муравьиной кислоты называют реакцией Лейкарта-Валлаха. В качестве реагентов можно использовать формиат аммония или соответствующие соли аминов.
5) Синтез аминов путем перегруппировок.
Реакции подробно рассмотрены ранее (см. лек. №36) В результате образуются первичные амины без примеси вторичных и третичных. При этом происходит укорочение углеродной цепи на один атом С.
2.2. Физические свойства и строение
Алифатические амины – бесцветные вещества с неприятным запахом. Низшие амины – жидкости, хорошо растворимые в воде. По растворимости они превосходят спирты с близкой молекулярной массой. Это объясняется образованием между амином и водой водородных связей типа , прочность которых сравнительно велика в силу высокой основности атома азота. Температуры кипения и плавления у третичных аминов ниже, чем у первичных и вторичных с примерно одинаковой молекулярной массой, что связано с ассоциацией последних за счет образования межмолекулярных водородных связей.
Однако эти межмолекулярные водородные связи слабее, чем у спиртов, по причине меньшей полярности связи N-Н по сравнению со связью О-Н. Вследствие этого амины имеют более низкие температуры кипения, чем спирты с близкой молекулярной массой.
Амины имеют пирамидальное строение. Величины углов R-N-R близки к тетраэдрическому – 106-108 0 . Считается, что атом азота находится в состоянии sp 3 -гибридизации, а четвертым лигандом является неподелённая пара электронов (“фантом”-лиганд).
Третичные амины с разными углеводородными радикалами должны быть хиральными, так как их молекулы не имеют плоскости симметрии. Однако за счет быстрой пирамидальной инверсии, которая представляет собой акт рацемизации, их невозможно выделить или зафиксировать в оптически активной форме.
Четвертичные аммониевые соли в случае разных заместителей существуют в виде пары устойчивых энантиомеров.
В электронных спектрах аминов наблюдается поглощение в дальней УФ-области при 195-215 нм, что соответствует возбуждению неподеленной пары электронов азота (переход n ® s* ).
В ИК-спектрах первичных и вторичных аминов наблюдаются полосы поглощения, связанные с валентными колебаниями связей N-H. Первичные амины характеризуются двумя полосами поглощения при
3500 см -1 , вторичные амины – одной полосой при
В спектрах ПМР химический сдвиг протонов связи N-H находится в области 1-5 м.д. и значительно меняется в зависимости от концентрации, температуры и растворителя.
2.3. Химические свойства
Химическое поведение аминов определяется в основном наличием свободной пары электронов у атома азота, которая обусловливает их основные и нуклеофильные свойства. Реакции с участием связей N-H и N-C под действием оснований и нуклеофильных реагентов для аминов менее характерны.
Алифатические амины являются одними из самых сильных незаряженных оснований (
10 — 11). Их водные растворы имеют щелочную реакцию.
С неорганическими кислотами амины образуют соли, которые в большинстве случаев хорошо растворимы в воде.
Основность аминов зависит от их строения и природы растворителя. Сравнение основности в водных растворах показывает, что алкиламины являются более сильными основаниями, чем аммиак. Вторичные амины превосходят по основности первичные. Такой ряд основности согласуется с электронодонорным влиянием алкильных групп (+I-эффект), которое способствует делокализации положительного заряда в сопряженной кислоте (ионе аммония) и тем самым стабилизирует её в большей степени, чем свободный амин. Однако это не объясняет уменьшения основности при переходе от вторичных аминов к третичным.
Источник
Амины
Амины — органические соединения, продукты замещения атомов водорода в аммиаке NH3 различными углеводородными радикалами. Функциональная группой аминов является аминогруппа — NH2.
Классификация аминов
По числу углеводородных радикалов амины подразделяются на первичные, вторичные и третичные.
Запомните, что основные свойства аминов выражены тем сильнее, чем больше электронной плотности присутствует на атоме азота. Однако, у третичных аминов три углеводородных радикала создают значительные затруднения для химических реакций.
Таким образом, у третичных аминов основные свойства выражены слабее, чем у вторичных аминов. Основные свойства возрастают в ряду: третичные амины (слабые основные свойства) → первичные амины → вторичные амины (основные свойства хорошо выражены).
Номенклатура и изомерия аминов
Названия аминов формируются путем добавления суффикса «амин» к названию соответствующего углеводородного радикала: метиламин, этиламин, пропиламин, изопропиламин, бутиламин и т.д. В случае если радикалов несколько, их перечисляют в алфавитном порядке.
Общая формула предельных аминов CnH2n+3N. Атомы углерода находятся в sp3 гибридизации.
Для аминов характерна структурная изомерия: углеродного скелета, положения функциональной группы и изомерия аминогруппы.
Получение
- Нагревание галогеналканов с аммиаком
В основе этой реакции лежит замещение атома галогена в галогеналканах на аминогруппу, при этом образуются амин и соль аммония.
При такой реакции нитрогруппа превращается в аминогруппу, образуется вода.
Знаменитой является предложенная в 1842 году Н.Н. Зининым реакция получения аминов восстановления ароматических нитросоединений (анилина и других). Она возможна в нескольких вариантах, главное, чтобы в начале реакции выделился водород.
Реакция сопровождается разрушением карбонильной группы и отщеплении ее от молекулы амида в виде воды.
Этим способом в промышленности получают гексаметилендиамин, используемый в изготовлении волокна — нейлон.
В промышленности амины получают реакцией аммиака со спиртами, в ходе которой происходит замещение гидроксогруппы на аминогруппу.
В ходе реакции галогеналканов с аммиаком, аминами, становится возможным получение первичных, вторичных и третичных аминов.
Химические свойства аминов
Как и аммиак, амины обладают основными свойствами, их растворы окрашивают лакмусовую бумажку в синий цвет.
В реакции с водой амины образуют гидроксиды алкиламмония, которые аналогичны гидроксиду аммония. Анилин с водой не реагирует, так как является слабым основанием.
Как основания, амины вступают в реакции с различными кислотами и образуют соли алкиламмония.
Данная реакция помогает различить первичные, вторичные и третичные амины, которые по-разному с ней взаимодействуют.
При конденсации первичных аминов с альдегидами и кетонами получают основания Шиффа, соединения, которые содержат фрагмент «N=C».
Соли аминов легко разлагаются щелочами (растворимыми основаниями). В результате образуется исходный амин, соль кислоты и вода.
При горении аминов азот чаще всего выделяется в молекулярном виде, так как для реакции азота с кислородом необходима очень высокая температура. Выделение углекислого газа и воды обыкновенно при горении органических веществ.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник