Способы поиска утечек хладагента
info@ klimmarket .ru |
Москва, Барабанный переулок, |
дом 3, офис 307, м. «Электрозаводская» |
Вентиляция
Осушение
Обратный звонок
- Главная »
- Полезная информация »
- Как найти утечку фреона? Основные способы и оборудование.
Как найти утечку фреона?
Утечка фреона может повлечь за собой ряд серьезных проблем в работе системы кондиционера, таких как:
- Влага в контуре и появление в нем кислот
- Появление воздуха в системе
- Уход масла и фреона
- Перегревание компрессорного блока и его выход из строя
- Появление неприятного запаха (гари)
- Нагнетаемый газ с высокой температурой может повлечь повреждение 4-ходового клапана
Все это оказывает влияние на срок службы кондиционера, климат в помещении, расходы на обслуживание и т.д.
Найти утечку фреона не так просто, так как место утечки может находится в труднодоступных местах.
Сама по себе утечка может быть вызвана рядом причин, например некачественных трубных соединений, плохой пайки и др. Подробнее об этом вы можете узнать в нашей статье » Ремонт кондиционера. Утечка фреона «.
Как найти утечку фреона в «контуре системы охлаждения»
Известно несколько способов:
- Осмотреть на предмет наличия масляных пятен на трубопроводе и вентилях
- С помощью мыльного раствора
- С помощью погружения в воду
- С помощью «течеискателей»
- С помощью специального красителя (добавляют в систему)
- С помощью высокого давления
- Способ погружения в воду
Если есть вожможность снять проверяемый участок системы и погрузить его в воду, тогда применим такой способ поиска утечки фреона. Нужно только заполнить участок с помощью сухого азота и загерметизировать.Само место утечки можно будет заметить по пузырям воздуха.
Добавьте моющее средство в воду — так пузыри не собираются на самом элементе, что поможет точно увидеть место утечки.
Такой способ считается не удобным и редко применяется на практике.
- Способ с мыльным раствором
- Данный способ применим в том случае, если вы знаете примерное место утечки и хотите в этом убедиться. Способ является простым и не требует высоких затрат. Как приготовить мыльный раствор знает каждый. Достаточно иметь губку, моющее средство или мыло.
- Также специальный мыльный раствор вы можете купить в магазине (в упаковках).
- Для определение утечки вы также можете пользоваться мыльным раствором при опрессовке азотом.
- Важно помнить основные правила:
— Пятна масла могут указать на место протечки (в этом случае способ эффективен)
— Не забывайте про удаление мыльного раствора после поиска утечки в том случае, если вы пользуетесь спреем (в нем могут быть различные добавки)
— Если в системе недостаточное давление, то хладагент заменяется с помощью сухого азота. Данное вещество может также немного шуметь во время выхода в предполагаемом месте утечки, что может также помочь в поиске.
- С помощью «галоидного течеискателя»
Если тип хладагента вашей системы хлоросодержащий, тогда вам подойдет поиск утечки фреона с помощью галоидного течеискателя.
При пайке медных трубок пламя окрашивается в зеленый цвет, когда происходит выход фреона из системы.
Плюсами данного способа можно назвать:
— Можно определять уровни утечек до 150 гр./ год
Минусы:
— Электронное устройство считается более эффективным, чем галоидное
— Может выделять вредные газы (нужно проветриваемое помещение)
Принцип работы:
Воздух проходит по медному элементу, который в это время нагревается. Как только обнаруживаются пары фреона, пламя меняет цвет.
Способ также считается слабо распостраненным.
- Способ с помощью специального красителя (ультрафиолет)
Широко известная технология в сфере автомобильного сервиса (автокондиционеры).
Принцип данного способа:
— Краситель закачивают в систему, которую хотят проверить
— Спустя некоторое время краситель проявляется в месте утечки, которое определяют с помощью ультрафиолетовой лампы
Недостатками можно назвать необходимость ждать результат, а также затраты на краситель, ультрафиолетовую лампу и очки.
- Проверка с помощью высокого давления
— В системе увеличивают давление, но не более предельных паспортных значений
— Фиксируют давление и температурные данные
— Затем проверяют показатель давления на случай его падения, что может говорить об утечке
Способ широко применим для любых видов систем с любой длинной трасс.
Стандартное давление для магистрали и внешнего блока при опрессовке в данном случае это 41,5 Атм.,для внутреннего блока (алюминий) 21,5 Атм. (см. паспортные характеристики)
Утечку также можно определить по характерному шипящему звуку.
Параллельно можно использовать способы с мыльным раствором и добавлением фреона совместно с азотом, а также использовать электронный течеискатель, что поспособствует лучшему результату.
Опрессовка азотом. Что необходимо.
Если мы говорим про крупные промышленные системы кондиционирования, то в таком случае используются баллоны объемом до 40л содержащие осушенный азот.
Сервисники часто пользуются баллонами объемом 10л (они просты в транспортировке, особенно если перевозить на машине). На бытовые и полупромышленные системы расходуют 1-2 шт. подобных баллона.
Давление регулируется специальным редуктором, который имеет предел давления около 50 Атм. На редукторе находятся два манометра, которые позволяют измерять давление баллона, а также на выходе после редуктора.
Сам по себе выбор редуктора не так прост и в тоже время важен. Так на шкалах редукторов может быть указан предел 50 Атм, но это не говорит о том, что редуктор подходит для такого режима работы.
Необходимо помнить об аварийных спускных клапанах, которые имеет каждый редуктор. С его помощью давление не поднимается более паспортных характеристик. Хорошим вариантом, к примеру, в таком случае будет являться кислородный редуктор РК-70 (с пределом 70 Атм).
Электронный течеискатель
Это эффективный способ поиска утечки фреона. Результат после работы с электронным течеискателем часто проверяется мыльным раствором, чтобы локализовать место утечки.
Такой течеискатель работает с хладагентом, прописанным в его паспорте, о чем следует помнить, подбирая его для своей системы.
Недостатки:
— Оксид углерода и пары спирта в воздухе помещения для такого устройства нежелательны — они способны снижать чувствительность прибора.
— Ветер на улице делает невозможным определить утечку, если вы там находитесь.
— Нужно периодически производить замену датчиков.
— Ценовая доступность прибора
Преимущества: прибор способен определить утечку от 3 до 5 гр/год.
Сама по себе чувствительность может регулироваться. Если утечка небольшая, то чувствительность выставляется на максимум. Электронные течеискатели имеют возможность сбрасывать чувствительность до фоновых уровней, что позволяет делать сброс даже при небольших концентрациях фреона в воздухе. В данном случае устройство примет такую концентрацию за нулевой уровень и перестанет проявлять реакцию на эти помехи.
Ультразвуковой течеискатель
Такой способ является современным и популярным. Стоит отметить, что для такого метода необходим специалист.
Он определяет утечку по звуку, частоты которого недоступны человеческому уху.
— Генератор ультразвуков передает колебания звуковых волн на специальный контактный щуп
— Вместе с генератором работает контактный приемник, выполняющий похожую функцию
— Аналоговый (компьютерный блок) проводит анализ запаздываний и искажения амплитуды частот сигналов ультразвука
По своему конструктиву такой течеискатель похож на ультразвуковой дефектоскоп.
Команда ООО»Климмаркет» действует в полном цикле работ по монтажу и ремонту климатического оборудования. Мы занимаемся не только обслуживанием кондиционеров и осушителей воздуха различных классов, но и предлагаем услуги в сфере систем вентиляции .
Для связи с нами звоните по номеру 8 (495) 920 — 10 — 19 , либо оставляйте заявки по адресу электронной почты Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Источник
Пособие для ремонтника
Прежде, чем детально изучать неисправности, обусловленные тем, что в контуре не хватает хладагента, которые очень часто вызваны наличием утечек, представляется небесполезным напомнить основные моменты, касающиеся технологии поиска утечек, а также проблемы, связанные с процедурой заправки контуров хладагентами.
А) Поиск утечек в эксплуатирующихся установках
Напомним, что хладагент, циркулируя внутри контура, постоянно вовлекает в такую же циркуляцию молекулы масла, находящегося в компрессоре. Таким образом, при наличии утечек, когда смесь хладагента и масла появляется на наружной поверхности отдельных деталей установки, хладагент испаряется и смешивается с воздухом, а частицы масла остаются на месте в жидком состоянии. Следовательно, очень часто место утечки может быть легко обнаружено по следам масла на трубопроводах или на тех деталях установки, которые расположены точно под местом утечки (в условиях, когда установка содержится в безупречной чистоте, что, впрочем, всегда должно иметь место!).
Обычно утечка возникает в местах соединений, как резьбовых, в результате неправильной затяжки, так и паяных, вследствие некачественной пайки (повышенная температура при пайке, приводящая к появлению пор в паяном соединении, или чрезмерное травление, со временем приводящее к растрескиванию). Ремонтник должен также обращать внимание на сильфоны прессостатов (которые могут перекручиваться, если при затяжке гаек на резьбовых соединениях не используются два ключа), заглушки (которые следует затягивать ключом, а не вручную), сальники технологических или регулирующих вентилей (которые ослабляют перед каждым использованием вентиля и вновь затягивают после этого), негерметичные предохранительные клапаны (следует иметь ввиду, что их выхлопные узлы иногда подсоединяются снаружи трубопроводов), уплотнительные узлы (для сальниковых компрессоров).
Напомним также, что не рекомендуется в качестве постоянных элементов холодильного контура использовать гибкие полимерные соединения (по типу гибких трубопроводов на манометрических коллекторах), так как они склонны к образованию пор и, следовательно, к появлению утечек.
Поиск утечек может производиться:
С помощью галогенных ламп, которые реагируют на хлор и, следовательно, предназначены для установок, содержащих хладагенты типа ХФУ(СРС) (R11, R12, R502. ) или ГХФУ (HCFC) (R22, R123. ). Имейте ввиду также испарения трихлорэтилена или жавелевой воды, которые тоже меняют окраску пламени ламп, поскольку содержат хлор.
ВНИМАНИЕ! Галогенные лампы реагируют только на хлор и, следовательно, не применимы для поиска утечек новых хладагентов типа ГФУ (HFC), таких как R134a, R404A, R407C или R410A. В этих случаях нужно будет использовать специальные способы поиска утечек.
С помощью мыльных растворов (методов обмыливания), что очень удобно для точного установления места утечки на подозрительном участке или в случае, когда пламя галогенной лампы плохо видно по причине яркого света, а также, если в окружающей среде имеются пары хладагентов (поскольку при этом галогенная лампа становится бесполезной, потому что ее пламя будет в этом случае постоянно зеленым).
С помощью электронных детекторов утечек. Будьте осторожны, большинство старых моделей детекторов, которые прекрасно работают с хладагентами типа CFC или HCFC (R12, R22, . ), не реагируют на хладагенты типа HFC, такие как R134a, R404A или R407C (при использовании детекторов старых моделей внимательно ознакомьтесь с инструкцией изготовителя).
С помощью цветных добавок в хладагент. Этот метод не пользуется большим успехом по причине проблем, которые он влечет за собой.
С помощью флюоресцирующих добавок в хладагент и ультрафиолетовой лампы (ультрафиолетового излучения). Этот метод с высокой эффективностью позволяет обнаруживать даже очень малые утечки, какой бы ни была природа используемого хладагента (CFC, HCFC, HFC) за счет применения соответствующих добавок.
В любом случае, ремонтник, достойный этого звания, никогда не покинет монтажной площадки, не выполнив операции по поиску утечек, особенно в тех элементах контура, на которых он работал.
Б) Поиск утечек в незаправленной установке
Достаточно известная технология заключается в том, что установка заправляется небольшим количеством хладагента типа CFC или HCFC, затем наддувается сухим азотом, после чего для обнаружения утечек используется галогенная лампа. Вместе с тем, такая технология требует учета некоторых особенностей, не говоря уже о проблемах, связанных с запретом выброса в атмосферу хлорсодержащих соединений. Прежде всего, после завершения проверок, контур должен быть тщательно отвакуумирован. Кроме того, на рис. 15.1 показано состояние установки, содержащий хладагент и наддутой азотом, про прошествии некоторого времени.
При одной и той же температуре азот почти в 3 раза легче, чем пары R22 и в 4 раза легче, чем пары R12.
В результате, по прошествии некоторого времени два газа сепарируются. Азот, как более легкий, скапливается в верхней части установки, а пары хладагента, как более тяжелые, опускаются в ее нижнюю часть. С учетом этого явления, если негерметичность имеется в верхней части установки, она не может быть обнаружена при помощи галогенной лампы!
Поэтому использовать данный метод можно только с учетом указанного эффекта и поиск утечек с помощью галогенной лампы всегда следует начинать с верхних элементов установки.
Итак, мы увидели недостатки технологии проверки герметичности контура с помощью смеси азота и хладагента.
Теперь обсудим другую технологию поиска утечек, не очень широко распространенную и состоящую в том, что холодильный контур вакуумируется, после чего выдерживается некоторое время под вакуумом с контролем темпа роста давления в нем. Если вакуум в установке сохраняется, значит контур герметичен.
Чтобы дать заключение о надежности такой технологии, сравним, что происходит при наличии негерметичности, например, в паяном соединении для двух случаев (см. рис. 15.2).
► С одной стороны (поз. 1) контур, находящийся под вакуумом, в котором в случае негерметичности наблюдается подъем давления.
► С другой стороны (поз. 2) контур, наддутый азотом до давления 10 бар, в котором в случае негерметичности наблюдается падение давления.
Поз. 1. Контур находится под вакуумом. Поскольку наружное давление равно атмосферному, перепад давления на паяном соединении незначительный (меньше одного бара).
Следовательно, расход воздуха через негерметичный стык небольшой и поступающий внутрь контура воздух обеспечивает сравнительно медленный подъем давления.
Поз. 2. Контур наддут азотом до давления в 10 бар. Перепад давления между контуром и окружающей средой в 10 раз больше, чем в предыдущем случае, и при отсутствии герметичности азот будет выходить из контура наружу.
Следовательно, при одних и тех же размерах негерметичности, расход газа через негерметичный стык во втором случае будет гораздо больше, чем в первом, и давление внутри контура будет изменяться быстрее, что позволяет гораздо легче обнаружить это с помощью манометра.
Заметим также, что в первом случае в контур поступает атмосферный воздух, содержащий влагу. Проникая внутрь, он нарушает одну из основных заповедей холодильщика: «Влага -враг холодильщика!» (напомним, что влага способна образовывать в соединениях с хладагентом особо разрушительные кислоты).
Наконец, чтобы покончить с обсуждением технологии поиска утечек путем вакуумирования контура, рассмотрим рис. 15.3, на котором изображено подключение развальцованной медной трубки к ниппельному наконечнику, представив себе, что гайка плохо закручена и, следовательно, должна приводить к негерметичности.
Случай 1. Контур находится под вакуумом, наружное давление прижимает развальцовку к ниппелю. Проход для воздуха ничтожный, негерметичность не обнаруживается.
Случай 2. Контур находится под давлением, которое отжимает фланец трубки от ниппеля. Утечка становится значительной и легко обнаруживается.
Из этого примера можно сделать окончательный вывод, что вакууми-рование контура должно использоваться только для удаления из него влаги и ни в коем случае для испытания на герметичность.
Как же тогда проверить герметичность?
Наиболее надежный способ заключается в наддуве контура исключительно сухим азотом (как правило, до давления в 10 бар), таким образом, чтобы полностью исключить опасность конденсации (азот не конденсируется при нормальных температурах). Кроме того, наддув контура сухим азотом облегчит последующую процедуру осушки контура.
Внимание! Баллон с азотом следует подключать к контуру обязательно через редуктор во избежание серьезной аварии (давление в азотных баллонах свыше 100 бар).
При значительных утечках давление в контуре быстро падает и очень часто утечки можно обнаружить по звуку «на слух» (струя азота «свистит», вытекая из контура), а также проводя ладонью по элементам контура (ощущая вытекающий азот и отмечая изменение характера шума).
При небольших утечках давление падает гораздо более медленно и негерметичность обнаруживается при нанесении на подозрительные места контура мыльного раствора («обмы-ливания») и наблюдении за появлением пузырьков в негерметичных точках.
Однако давление может меняться и при отсутствии утечек, если во время испытания значительно меняется температура.
Действительно, если, например, температура окружающей среды повышается, температура азота также повышается и он расширяется. Это расширение (объем, занимаемый азотом в установке, не меняется) вызывает, естественно, повышение давления в контуре. И наоборот, снижение температуры окружаюшей среды вызывает снижение давления, обусловленное сжатием азота.
Изменение давления, вызванное изменением температуры, подчиняется закону Шарля:
После нескольких часов выдержки установки под давлением (например, в течение ночи для установки значительных размеров), если изменения давления не выходят за пределы, обусловленные законом Шарля, можно с уверенностью сделать вывод об отсутствии утечек.
15.1. УПРАЖНЕНИЕ |
Вечером в июле ремонтник наддул установку азотом, чтобы проверить герметичность. Температура окружающей среды составляла 27°С, а давление по показаниям манометров 10,8 бар. На следующий день утром он увидел, что манометры показывают 10,2 бар, но температура упала до 17°С. Какой вывод вы сделаете?
Решение
Поскольку температура понизилась, то падение давления следует считать нормальным явлением. Единственный вопрос состоит в том, можно ли падение давления объяснить только законом Шарля, или существуют еще и утечки.
Вечером давление Р1, показываемое манометром (следовательно, избыточное давление), составляло 10,8 бар, то есть 10,8 + 1 = 11,8 бар абсолютных при температуре Т1, равной 27°С или 27 + 273 = 300 К абсолютных (в Кельвинах).
На следующий день утром абсолютная температура Т2 понизилась до значения Т2 = 17 + 273 = 290 К. В соответствии с законом Шарля, абсолютное давление Р2 в контуре должно быть равным:
Р2 = Р1 х Т2 / Т1, то есть 11,8 х 290/300 =11,4 бар, что соответствует избыточному давлению, показываемому манометрами, равному 11,4 — 1 = 10,4 бар.
Поскольку давление упало до 10,2 бар вместо допустимых 10,4 бар, можно сделать вывод о наличии небольшой негерметичности контура, обусловленной, может быть, пористостью паяных соединений или о том, что падение давления вызвано нежесткостью трубопроводов.
Во всяком случае, нужно подумать о регулярных проверках герметичности данной установки.
Источник