- Простое число
- Алгоритмы нахождения простых чисел подряд
- Самый простой способ поиска простого числа
- Способ посложнее
- Способ № 3
- Способ № 4
- Пояснения
- Способы поиска простых чисел
- Оптимизированный перебор делителей
- Перебор с запоминанием найденных простых чисел
- Решето Эратосфена
- Колёсный метод
- Алгоритм нахождения простых чисел
- Оптимизация алгоритма нахождения простых чисел
Простое число
Алгоритмы нахождения простых чисел подряд
Алгоритмы работают 1 секунду, после чего показывают результаты работы. Перед работой алгоритмов формируется массив, куда записываются найденные простые числа. Особенности каждого алгоритма описываются ниже.
Самый простой способ поиска простого числа
Перебираем каждую цифру (N) от 3 и до окончания времени (t), и делим её на все числа от 2 до N-1 (ну, явно, на единицу и на само себя любая цифра разделится нацело). Цифра 2, простое число, заносится в массив вручную перед началом работы цикла поиска.
Это самый медленный, но самый понятный способ нахождения простого числа.
Способ посложнее
Перебираем каждую цифру (N) от 3 и до окончания времени (t), и делим её на все числа от 2 до корня от N включительно. Цифра 2, простое число, заносится в массив вручную перед началом работы цикла поиска.
Этот способ побыстрее, примерно в 7,4 раза, чем первый.
Способ № 3
Перебираем все цифры (N), которые оканчиваются на 1, 3, 7 или 9 (всё, что кончается на 0 или 5, явно не простое число ), и делим их на все числа от 3 до корня от N включительно. Цифры 2, 3 и 5, простые числа, заносятся в массив вручную перед началом работы цикла поиска.
Этот способ быстрее, примерно в 8,3 раза, чем первый.
Способ № 4
Перебираем все цифры (N), которые оканчиваются на 1, 3, 7 или 9 (всё, что кончается на 0 или 5, явно не простое число ), и делим их на все найденные до этого времени простые числа, от 3 до корня от N включительно. Цифры 2, 3 и 5, простые числа, заносятся в массив вручную перед началом работы цикла поиска.
Этот способ быстрее, примерно в 9,1 раза, чем первый.
Пояснения
«Количество простых чисел»: количество чисел, найденное за единицу времени. «Стали делить»: то число, которое проходило проверку в момент прекращения работы алгоритма. «Число делений»: общее количество действий типа «деление», которое делает алгоритм за единицу времени. «Время выполнения»: время работы алгоритма. Учитывает время подготовки локальных данных функцией поиска и время работы алгоритма. Время для вывода данных на экран не учитывается.
Особо внимательные могли заметить, что во время работы алгоритмов подсчитывается количество делений — одного из самых затратных для процессора операций. Так вот это количесто во всех вариантах одинаково (+/- погрешность). Это показатель того, как качество кода влияет на производительность. Процессор один, а вот найдено чисел в разных вариантах разное количество.
Источник
Способы поиска простых чисел
Наиболее наивный подход к поиску простых чисел заключается в следующем. Будем брать по очереди натуральные числа n , начиная с двойки, и проверять их на простоту. Проверка на простоту заключается в следующем: перебирая числа k из диапазона от 2 до n − 1 , будем делить n на k с остатком. Если при каком-то k обнаружится нулевой остаток, значит, n делится на k нацело, и число n составное. Если же при делении обнаруживались только ненулевые остатки, значит, число простое; в этом случае выводим его на экран. Ясно, что, получив нулевой остаток (тем самым обнаружив, что n составное), следует отказаться от дальнейших проб на делимость.
Заметим, что все простые числа, за исключением двойки, нечётные. Если обработать особо случай n = 2 , то все последующие числа n можно перебирать с шагом 2 . Это даст приблизительно двукратное увеличение производительности программы.
Оптимизированный перебор делителей
Ещё одно улучшение возникает благодаря следующему утверждению: наименьший делитель составного числа n не превосходит n . Докажем это утверждение от противного. Пускай число k является наименьшим делителем n , причём k > n . Тогда n = k l , где l ∈ ℕ , причём l ⩽ n , то есть l также является делителем числа n , кроме того, меньшим, чем k , а это противоречит предположению. Всё это означает, что, перебирая потенциальные делители, можно оборвать перебор, когда k достигнет n : если до этого момента делителей не найдено, то их нет вообще. Кстати, при проверке на простоту числа 11 это наблюдение позволяет сократить перебор более чем в три раза, а для числа 1111111111111111111 — более чем в 1054092553 раза (оба числа — простые).
Перебор с запоминанием найденных простых чисел
Существенно сократить перебор возможных делителей можно, пожертвовав памятью во время исполнения программы. В основе этой оптимизации лежит следующее утверждение: наименьший собственный делитель k составного числа n (то есть отличный от единицы и от самого n ) является простым. Докажите самостоятельно.
Поскольку при проверке числа n на простоту важен именно наименьший собственный делитель, делители следует искать среди простых чисел, перебирая их по порядку. Но где взять их список? Ответ прост: поскольку наша программа будет искать все простые числа по порядку, кроме вывода на экран будем добавлять их в список найденных простых. Для очередного n будем перебирать потенциальные делители только из этого списка, по-прежнему, вплоть до n .
Издержкой этого подхода является необходимость держать в памяти растущий список найденных простых чисел. Однако объём требуемой для этого памяти будет невелик по сравнению с громадным выигрышем в быстродействии. Следующая таблица даёт представление об экономии при переборе и о затратах памяти:
n | количество k ⩽ n | количество простых k ⩽ n |
---|---|---|
10 | 3 | 1 |
100 | 10 | 4 |
1000 | 31 | 10 |
10000 | 100 | 25 |
100000 | 316 | 65 |
1000000 | 1000 | 168 |
Решето Эратосфена
Другой алгоритм поиска простых чисел приписывают древнегреческому учёному Эратосфену Киренскому (Έρατοσθένης).
Обратите внимание: количество зачёркиваний у составного числа — это количество простых делителей (без учёта кратности).
Колёсный метод
Трюк, упомянутый в разделе «Наивный перебор», позволяет вдвое сократить список кандидатов в простые числа — заведомо составными будут все чётные числа кроме двойки. Посмотрим, нельзя ли подобным образом учесть ещё несколько первых простых чисел, чтобы дополнительно уменьшить число кандидатов.
Чисел, делящихся на 2 — половина, а делящихся на 3 — треть. Значит, доля чисел, делящихся хотя бы на одно из этих чисел, равна 1 2 + 1 3 − 1 2 ⋅ 1 3 = 2 3 (вычитается доля чисел, делящихся и на 2 , и на 3 , иначе такие числа будут учтены дважды). Для интересной операции, которую мы только что выполнили над дробями 1 2 и 1 3 , введём обозначение: x ⊕ y = x + y − x y .
Очевидно, операция ⊕ коммутативна: x ⊕ y = y ⊕ x . Кроме того, как нетрудно проверить, она ассоциативна: x ⊕ y ⊕ z = x ⊕ y ⊕ z .
Теперь ясно, что учёт следующего простого числа, пятёрки, увеличивает долю заведомо составных чисел (делящихся на 2 , 3 , 5 ) до 1 2 ⊕ 1 3 ⊕ 1 5 = 11 15 . Учёт семёрки даст 1 2 ⊕ 1 3 ⊕ 1 5 ⊕ 1 7 = 11 15 ⊕ 1 7 = 27 35 . Интересно выяснить, какую выгоду можно получить, учитывая следующие простые числа, и каковы будут издержки.
Мы вычислили «суммы» обратных величин для первых k простых чисел и свели результаты в таблицу:
k | 1 2 ⊕ 1 3 ⊕ 1 5 ⊕ … ⊕ 1 p k |
---|---|
1 | 0,5000… |
2 | 0,6667… |
3 | 0,7333… |
4 | 0,7714… |
5 | 0,7922… |
6 | 0,8082… |
7 | 0,8195… |
8 | 0,8290… |
9 | 0,8364… |
10 | 0,8421… |
Числа в правой колонке таблицы растут, но всё медленней.
Список чисел от 1 до P k , взаимно простых с P k , назовём колесом, а сами такие числа — спицами в колесе. Теперь мы знаем, что любое из простых чисел либо одно из p 1 , p 2 , … , p k , либо содержится среди чисел вида s + n P k , где s — спица. Все остальные натуральные числа, кроме единицы, заведомо составные, и их доля, как показывает таблица, довольно велика даже для небольших k .
Для проверки числа N на простоту следует прежде всего поискать N среди чисел p 1 , p 2 , … , p k . Если поиск не увенчался успехом, проверяем по очереди, не делится ли N на одно из p i . Если делится, число N — составное. Если же нет, ищем делители N среди спиц колеса s (пропустив, естественно, единицу), затем среди чисел вида s + P k , затем среди чисел вида s + 2 P k , затем — s + 3 P k , и так продолжаем до тех пор, пока квадрат очередного делителя не превысит N .
Построим колёса для первого одного простого числа, первых двух и первых трёх:
k | колесо |
---|---|
1 | 1 |
2 | 1 , 5 |
3 | 1 , 7 , 11 , 13 , 17 , 19 , 23 , 29 |
4 | 1 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 , 109 , 113 , 121 , 127 , 131 , 137 , 139 , 143 , 149 , 151 , 157 , 163 , 167 , 169 , 173 , 179 , 181 , 187 , 191 , 193 , 197 , 199 , 209 |
Возьмём для примера колесо, построенное для двух первых простых чисел — 2 и 3 . Проверяя на простоту число N при помощи такого колеса, убедившись, что N не двойка и не тройка, пытаемся делить это число сначала на 2 , 3 , а затем — на 5 , 7 , 11 , 13 , 17 , 19 , 23 , 25 , 29 , … , то есть на числа из арифметических прогрессий 1 + 6 t и 5 + 6 t , t = 0 1 2 3 … . При N = 661 имеет смысл остановиться на числе 25 , поскольку квадрат следующего в списке, 29 , уже больше 661 . Теперь можно заключить, что число 661 — простое.
Удобно изображать список возможных делителей в виде таблицы шириной P k (в нашем примере это 2 ⋅ 3 = 6 ): 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 … Серые числа заведомо составные. Среди цветных чисел также могут встретиться, хоть и редко, составные числа (синие) — мы помним, что колёсный метод исключает не все составные числа из рассмотрения.
Для проверки того же числа 661 на колесе, построенном для трёх первых простых чисел, нужно проверить его делимость сначала на 2 , 3 , 5 , затем — на 7 , 11 , 13 , 17 , 19 , 23 .
Есть соблазн использовать для построения колеса как можно больше первых простых чисел. Но не стоит этого делать. Выигрыш с добавлением очередного простого числа будет всё меньше и меньше, а количество спиц в k -ом колесе будет расти всё быстрее и быстрее. Можно показать, что количество спиц в k -ом колесе равно p 1 − 1 p 2 − 1 p 3 − 1 ⋅ … ⋅ p k − 1 . Эта последовательность выглядит так: 1 , 2 , 8 , 48 , 480 , 5760 , 92160 , 1658880 , … . Слишком большие колёса только замедлят выполнение программы, к тому же создание списка спиц потребует массу времени. Наши эксперименты показали, что оптимальное количество простых, используемых для построения колеса, равно четырём.
Ах, да. Почему метод называется колёсным? Возьмём колесо со спицами, пронумерованными от 1 до P k , и удалим спицы с номерами, не взаимно простыми с P k . Если прокатить такое колесо по прямой, отмечая следы концов уцелевших спиц, на прямой останутся отметки, принадлежащие арифметическим прогрессиям вида s + P k t . Первые три колеса показаны на рисунке 14.1. «Колёса для проверки чисел на простоту». Следующее колесо уже в семь раз больше самого крупного из показанных, и мы решили воздержаться от его рисования.
Источник
Алгоритм нахождения простых чисел
Оптимизация алгоритма нахождения простых чисел
2 3 5 7 11 13 17 19 23 29 31… $250.000…
Дело было давно, в университете, когда мы начали изучать язык программирования Pascal и домашним заданием стало создание алгоритма нахождения простых чисел.
Алгоритм был придуман и тутже реализован на изучаемом языке. Программа запрашивала у пользователя число N и искала все простые числа до N включительно. После первого успешного теста сразу же возникло непреодолимое желание ввести N = «много». Программа работала, но не так быстро как хотелось бы. Естественно, дело было в многочисленных проверках (порядка N*N/2), поэтому пришлось избавиться от лишних. В итоге получилось 5 похожих алгоритмов каждый из которых работал быстре предыдущего. Недавно захотелось их вспомнить и реализовать, но на этот раз на Python.
Итак, поехали. Первый алгоритм, ударивший в студенческую голову, продемонстрирован в Листинге 1.
Очень быстро понимаешь, что в подсчете делителей каждого числа нет никакой надобности и поэтому переменную k можно освободить от своих обязанностей. Действительно, если хотябы один делитель имеется, то число уже не простое. Смотрим Листинг 2.
Конструкция break позволяет нам завершить выполнение внутреннего цикла и перейти к следующей итерации внешнего.
Далее возникает вопрос: «а зачем делить на 4, если на 2 число не делится?». Приходим к выводу, что искать делители нужно только среди простых чисел не превышающих делимое. Наш алгоритм превращается в… см. Листинг 3.
А потом вспоминаем теорию чисел и понимаем, что переберать надо только числа, не превосходящие корня из искомого. К примеру, если число M имеет делитель pi, то имеется делитель qi, такой, что pi * qi = M. То есть, чтобы найти пару, достаточно найти меньшее. Среди всех пар, предполагаемая пара с максимальным наименьшим — это пара с равными pi и qi, то есть pi * pi = M => pi = sqrt(M). Смотрим Листинг 4.
Код из Листинга 4 при N=10000 выполняется примерно в 1000 раз быстрее, чем самый первый вариант. Есть еще один «ускоритель», проверять только те числа, которые заканчиваются на 1, 3, 7 или 9 (так как остальные очевидно делятся на 2 или 5). Наблюдаем Листинг 5.
В следствии незначительного изменения Листинга 5 получаем небольшую прибавку в скорости:
Итого: Программа из последнего листинга выполняется, примерно, в 1300 раз быстрее первоначального варианта.
Я не ставил перед собой задачи написать программу максимально быстро решающую данную задачу, это скорее демонстрация начинающим программистам того, что правильно составленный алгоритм играет далеко не последнюю роль в оптимизации Ваших программ.
P.S.
Благодаря замечаниям получаем Листинг 7:
при N=10000, поучаем время:
time 1 = 26.24
time 2 = 3.113
time 3 = 0.413
time 4 = 0.096
time 5 = 0.087
time 6 = 0.083
time 7 = 0.053
Результаты при n = 1 000 000:
time 7 = 7.088
time 8 = 1.143
Источник