Плоскопараллельное перемещение
Плоскопараллельное перемещение — способ перехода от общего положения геометрической фигуры к частному, которое можно осуществить за счет изменения взаимного положения проецируемой фигуры и плоскости проекции путем перемещения в пространстве проецируемой фигуры так, чтобы она заняла частное положение относительно плоскостей проекций, которые при этом не меняют своего положения в пространстве.
Данный путь лежит в основе метода плоскопараллельного перемещения
Плоскопараллельное перемещение осуществляется путем перемещения геометрической фигуры в новое положение так, чтобы траектория перемещения ее точек находились в параллельных плоскостях. Образно это можно представить в виде перемещения например отрезка вмерзшего в кусок льдины.
В зависимости от положения этих плоскостей по отношению к плоскостям проекций и вида кривой траектории перемещения точек различают:
а) способ параллельного перемещения. Плоскости — носители траекторий перемещения точек параллельны какой-либо плоскости проекции. Траектория — произвольная линия.
б) способ вращения вокруг оси, перпендикулярной к плоскости проекций. Плоскости — носители траектории перемещения точек параллельны плоскости проекции. Траектория — дуга окружности, центр которой находится на оси,перпендикулярной плоскости проекции;
в) способ вращения вокруг оси, параллельной плоскости проекции (вращение вокруг линии уровня);
Плоскости — носители траектории перемещения точек перпендикулярны данной линии уровня. Траектория — дуга окружности, центр которой находится на линии уровня.
г) способ вращения вокруг оси, принадлежащей плоскости проекции (вращение вокруг следа плоскости);
Плоскости — носители траектории перемещения точек перпендикулярны данному следу плоскости. Траектория — дуга окружности, центр которой находится на следе плоскости.
Источник
Способ плоскопараллельного перемещения
Способ плоскопараллельного перемещения (переноса) имеет справедливым утверждение, которое может быть выражено в виде следующей теоремы.
При параллельном переносе геометрической фигуры относительно плоскости проекции, проекция фигуры на эту плоскость хотя и меняет свое положение, но остается конгруентной проекции фигуры в ее исходном положении.
Докажем эту теорему для случая, когда проецируемая фигура Ф плоская, и ее плоскость принадлежит плоскости уровня Ф⊂α, плоскость α║H (рисунок). В этом случае, на основании свойства 6 ортогонального проецирования горизонтальная проекция Ф` будет конгруентна самой фигуре Ф(Ф`≅Ф).
При перемещении фигуры Ф в новое положение Ф1, фигура Ф`1 будет конгруентна Ф, так как:
а) расстояние между точками фигуры не меняется;
б) в процессе перемещения фигура Ф все время остается в плоскости α.
В силу параллельности плоскостей α и H, Ф`1≅Ф1, но Ф1≅Ф, а Ф≅Ф`, следовательно Ф`1≅Ф`. Данная теорема будет справедлива и в случае, когда геометрическая фигура занимает произвольное (непараллельное) положение относительно плоскости проекции.
а) При всяком перемещении точки в плоскости, параллельной плоскости проекции H, ее фронтальная проекция перемещается по прямой, параллельной оси x.
б) В случае произвольного перемещения точки в плоскости, параллельной V, ее горизонтальная проекция перемещается по прямой, параллельной оси x.
Пользуясь теоремой и отмеченными свойствами, не составляет труда построить новые проекции геометрической фигуры (по заданным ее ортогональным проекциям), которые соответствуют частным положениям проецируемой фигуры по отношению к плоскости проекции.
[AB]- отрезок прямой а общего положения перевести в положение параллельное V. Выполняем перемещение отрезка [A`B`] на горизонтальной плоскости проекции в положение параллельное оси x [A1B1]. При таком перемещении новая горизонтальная проекция конгруентна исходной [AB]≅[A1B1] на основании теоремы.
Фронтальные проекции точек отрезка [A»B»] будут перемещаться в новое положение [A»1B»1] в плоскостях α и β параллельных горизонтальной плоскости проекции — по следам αV и βV.
Для перевода отрезка прямой общего положения в положение параллельное V требуется одно перемещение отрезка параллельно плоскости проекции H.
Для перевода отрезка прямой из общего положения в проецирующее, необходимо последовательно выполнить два перемещения параллельно плоскостям проекции.
Зная характер геометрических построений, которые необходимо выполнить для перемещения отрезка из общего положения в проецирующее, можно легко перевести плоскость, произвольно расположенную в пространстве, в частное положение (параллельное или перпендикулярное плоскости проекции).
В графической работе №4 используется способ плоскопараллельного перемещения для решение задачи по построению треугольной пирамиды SABC: Графическая работа 4. В графической работе №5 используется способ плоскопараллельного перемещения для решение задачи по по определению наклона ребра SC треугольной пирамиды SABC к плоскости основания ABC: Графическая работа 5. Плоскопараллельное перемещение треугольника, со всеми подробностями, смотри: Плоскопараллельное перемещение треугольника
Источник
57. Способ плоскопараллельного перемещения
Способ плоскопараллельного перемещения основан на том, что при параллельном переносе геометрического тела относительно плоскости проекций проекция его на эту плоскость не меняет своей формы и размеров, хотя и меняет положение. При этом если точка перемещается в плоскости, параллельной П1, то ее фронтальная проекция изображается в виде прямой, параллельной оси П2/П1. Если же точка перемещается в плоскости, параллельной П2, то ее горизонтальная проекция изображается в виде прямой, параллельной той же оси.
На рис. 107 показан комплексный чертеж прямой АВ. Прямая не параллельна ни одной из плоскостей проекций. Требуется с помощью плоскопараллельного перемещения задать ей такое положение, чтобы она была параллельна одной из плоскостей проекций, например П2. Через произвольную точку А1, проводим прямую l1 параллельную оси П2/П1, и от этой точки на прямой откладываем отрезок, равный
А1В1. Из точки А1проводим вертикальную линию связи, а из точки AT, — горизонтальную линию, на пересечении которых и будет новое положение фронтальной проекции А2‘. Аналогично проведем вертикальную линию связи из точки В1до пересечения с горизонтальной линией, проведенной из точки B2. Новое положение фронтальной проекции точки В получим на пересечении этих линий в точке В2‘.
После преобразования чертежа горизонтальная проекция прямой АВ стала параллельна плоскости П2, а значит, спроецировалась она на эту плоскость в натуральную величину.
Применяя метод плоскопараллельного перемещения, можно решать многие задачи, связанные с определением натуральной величины отрезков, углов, плоских фигур, а также заданием им нужного положения. Однако он связан с изменением положения геометрической фигуры в пространстве. В практике же встречаются задачи, при решении которых при преобразовании комплексного чертежа удобнее оставить положение проецирующего тела неизменным, а изменить положение плоскостей проекций.
Источник
Способ плоскопараллельного перемещения
Сущность способа плоскопараллельного перемещения состоит в том, что все точки геометрической фигуры перемещаются по произвольным траекториям в плоскостях уровня относительно плоскости проекций, вследствие чего сохраняется неизменным расстояние от точек геометрической фигуры до этой плоскости проекций.
На основании сказанного сформулируем основное свойство проекций данного способа. При плоскопараллельном перемещении соответствующая проекция геометрической фигуры не изменяет своей формы и размеров.
Докажем это свойство на примере перемещения прямой в плоскостях горизонтального уровня (рис. 30, а). ТочкиАиB,заданного отрезка прямой, перемещаются соответственно в плоскостяхΣиΣ‘,вследствие чего не изменяется разность расстояний от этих точек до горизонтальной плоскости проекций. Поэтому сохраняется неизменной величина угла наклона прямойАВк горизонтальной плоскости проекций, т. е. α = α*. Следовательно проекцииА1В1 и А1 * В1 * равны между собой.
На рис. 30, бпоказан пример преобразования на комплексном чертеже отрезка прямой (АВ) общего положения в прямую фронтального уровня, для чего перемещение заданного отрезка следует производить в плоскостях горизонтального уровня, так как при этом будет меняться только угол наклона отрезка прямой к фронтальной плоскости проекцийП2. По условию задачи этот угол необходимо изменить от заданного в примере значения до нулевого, при котором прямая АВ будет параллельна плоскостиП2.
На основании свойства проекций при плоско параллельном перемещении горизонтальную проекцию располагают в новом положении А1 * В1 * в любом удобном для построения месте и ориентируют перпендикулярно линиям связи, тем самым выполняя условие параллельности прямойАВи плоскостиП2. Затем строят фронтальную проекциюА2 * В2 * .
Способ вращения
Сущность способа состоит во вращении геометрической фигуры вокруг прямолинейной оси в заданной системе плоскостей проекций.
На рис. 31 показано вращение простейшей геометрической фигуры – точки (А) вокруг прямолинейной оси (i), где:
АО– радиус вращения;
l –траектория вращения – окружность;
φ – угол поворота точки вокруг оси.
Ось вращения (i)может занимать по отношению к плоскостям проекций следующие положения:
i –проецирующая прямая;
i– прямая уровня;
i – прямая общего положения.
В первом случае, когда ось перпендикулярна плоскости проекций, траектория вращения точки изображается в натуральную величину на соответствующую плоскость проекций, так как плоскость вращения является плоскостью уровня, а на другую в виде прямой, перпендикулярной линиям связи.
Во втором случае, когда ось вращения параллельна плоскости проекций, траектория вращения точки изображается на соответствующую плоскость проекций в виде прямой, так как плоскость вращения является проецирующей, а на другую в виде эллипса. Эта ситуация значительно усложняет графические построения на комплексном чертеже.
В третьем случае плоскость вращения точки является плоскостью общего положения, вследствие чего траектория вращения точки изображается на плоскостях проекций в виде эллипсов, что не позволяет выполнять на комплексном чертеже графические построения. Если по условию задачи необходимо выполнить вращение геометрической фигуры относительно прямой общего положения, то следует предварительно выполнить преобразование чертежа так, чтобы ось вращения стала прямой уровня или проецирующей, например, способом замены плоскостей проекций.
Источник
1.4.3 Способ плоскопараллельного перемещения
Плоско-параллельным перемещением называется такое движение объекта, при котором все его точки перемещаются в плоскостях , параллельных между собой.
При плоскопараллельном перемещении относительно горизонтальной плоскости проекций П1 все точки объекта перемещаются в горизонтальных плоскостях уровня. При этом горизонтальная проекция объекта по форме и размерам не меняется, изменяется только положение объекта относительно плоскости П1. Фронтальные проекции точек объекта перемещаются по прямым, параллельным оси проекций х.
При плоскопараллельном перемещении относительно фронтальной плоскости проекций П2 все точки объекта перемещаются во фронтальных плоскостях уровня при этом фронтальная проекция объекта по форме и размерам не меняется, изменяется только положение объекта относительно плоскости П2. Горизонтальные проекции точек объекта перемещаются по прямым, параллельным оси проекции х (рисунок 1.4.8).
Рисунок 1.4.8 – Плоско-параллельное перемещение
Рассмотрим примеры преобразования чертежа способом плоскопараллельного перемещения при графическом решении четырех основных задач.
Задача №1. Преобразовать прямую общего положения во фронтальную прямую уровня (рисунок 1.4.9).
Решение. Выполним плоско-параллельное перемещение прямой АВ относительно фронтальной плоскости проекций. Для того, чтобы прямая стала параллельной П2, горизонтальную проекцию (АВ) А1В1 переместим в свободное место чертежа и расположим параллельно оси х. При этом длина отрезка А1В1=А1 1 В1 1 . Фронтальные проекции точек АВ (А1В1) перемещаются соответственно по прямым α2, β2 – фронтальным проекциям горизонтальных плоскостей уровня α и β, в которых перемещаются точки А и В. Затем перпендикулярно оси х из проекций точек А1 1 и В1 1 проведем линии связи. Из проекций А2 и В2 параллельно оси х проведем линии связи до пересечения с соответствующими линиями связи в соответствии с рисунком 1.4.9. В результате построения определяется натуральная величина АВ и угол γ его наклона к горизонтальной плоскости проекций.
Рисунок 1.4.9 – Решение первой основной задачи способом плоско-параллельного перемещения
Задача №2. Преобразовать прямую общего положения в горизонтально-проецирующую прямую (рисунок 1.4.10).
Решение. Эта задача решается при помощи двух преобразований. Сначала прямую АВ преобразуем во фронтальную прямую уровня (смотри задачу №1), а затем плоскопараллельно переместим прямую АВ относительно фронтальной плоскости проекций и преобразуем в горизонтально проецирующую прямую. Для этого проекцию прямой АВ( А2 1 В2 1 ) переместим в свободное место чертежа и расположим ее перпендикулярно оси х, не изменяя ее размеров. При этом горизонтальные проекции точек отрезка прямой АВ(А1 1 В1 1 ) перемещаются по прямой θ1— горизонтальной проекции фронтальной плоскости уровня θ, в которой перемещаются точки АВ. Определим точку пересечения линий связи проекций точек А1 1 ,В1 1 и А2 1 ,В2 1 . Горизонтальная проекция преобразованной прямой проецируется в точку, т.е. прямая АВ преобразилась в горизонтально проецирующую прямую.
Рисунок 1.4.10 – Решение второй основной задачи способом плоско-параллельного перемещения
Задача №3. Преобразовать плоскость общего положения во фронтально проецирующую плоскость (Рисунок 1.4.11).
Решение. Плоскость задана треугольником ABC. В плоскости треугольника предварительно построим фронталь f(f1,f2). Заметим, если плоскость преобразуется в горизонтально проецирующую, то в плоскости проводиться горизонталь h. Треугольник плоскопараллельно перемещаем таким образом, чтобы фронталь треугольника располагалась перпендикулярно горизонтальной плоскости проекций, то сама фронталь на эту плоскость проецируется в точку, а плоскость треугольника – в прямую, т.е. плоскость треугольника ABC станет горизонтально проецирующей. Поэтому в свободном месте чертежа фронтальную проекцию Δ ABC(A2B2C2) расположим так, чтобы фронтальная проекция фронтали (f2) располагалась перпендикулярно оси х. При этом фронтальные проекции треугольника не изменили своей формы (A2B2C2= A2 1 B2 1 C2 1 ), а горизонтальные проекции вершин Δ ABC(A1B1C1) переместились по прямым α1, β1, γ1 – горизонтальным проекциям фронтальных плоскостей уровня, проведенных через эти вершины. Фронтальная проекция Δ ABC (A1 1 B1 1 C1 1 ) будет представлять собой отрезок прямой, т.е. плоскость треугольника станет горизонтально проецирующей. При помощи этой задачи также определяется натуральная величина угла наклона φ плоскости Δ ABC к фронтальной плоскости проекций (рисунок 1.4.11).
Рисунок 1.4.11 — Решение третьей основной задачи способом плоско-параллельного перемещения
Рисунок 1.4.12 — Решение четвертой основной задачи способом плоско-параллельного перемещения
Задача №4. Преобразовать плоскость общего положения во фронтальную плоскость уровня (рисунок 1.4.12).
Решение. Для решения этой задачи необходимо выполнить два преобразования: сначала преобразовать плоскость треугольника во фронтально проецирующую плоскость (смотри задачу №3), а затем преобразовать Δ ABC, чтобы он находился во фронтальной плоскости уровня. Для этого на свободном месте чертежа расположим горизонтальную проекцию Δ ABC(A1 1 B1 1 C1 1 ) параллельно оси х. При этом A1B1C1=A1 1 B1 1 C1 1 , а фронтальные проекции вершин треугольника будут перемещаться по соответствующим плоскостям уровня – λ2, κ2, τ2. Так как преобразованный треугольник лежит в плоскости уровня, следовательно, его фронтальная проекция после последнего преобразования, будет являться натуральной величиной Δ ABC.
Источник