Научная электронная библиотека
§ 3.1.4. Строение клетки
Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).
Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения
Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.
1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.
Повреждение наружной оболочки приводит к гибели клетки (цитолиз).
2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране
участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).
Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.
Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.
3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).
транспортировка питательных веществ и утилизация продуктов обмена клетки;
буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;
поддержание тургора (упругость) клетки;
все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.
4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).
Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления
Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.
При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери
Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.
В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.
В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.
Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.
– хранение генетической информации;
– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.
4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.
Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.
5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.
Функция рибосом: обеспечение биосинтеза белка.
6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).
Функции эндоплазматической сети:
– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;
– транспортировка продуктов синтеза ко всем частям клетки.
Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).
7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).
Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент
Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1
При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:
АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.
Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.
АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].
Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).
Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).
Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!
8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.
Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.
9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).
Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.
10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:
Пластиды бывают трех типов:
1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.
2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.
3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).
Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.
11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.
Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:
– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);
– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;
– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).
Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).
Более общая классификация клеток представлена на рис. 3.16.
Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.
Источник
Биология
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Метаболизм
Всякая живая клеточная структура постоянно осуществляет различные реакции, которые обеспечивают все основные процессы, необходимые для нормального существования. Так обеспечивается постоянство условий внутренней среды биологической системы или гомеостаз. При нарушении этих условий происходит сбой в работе всей системы, что способно привести к гибели не только отдельной клетки, но и всего организма. Соответственно, все процессы ориентированы на поддержание именно гомеостаза.
С целью реализации трудоемких биохимических реакций требуются различные соединения, а также энергия, получаемые организмом при метаболизме.
Получается, что ассимиляция и диссимиляция – это взаимозависимые процессы, протекающие синхронно.
Любой организм, вследствие питания, получает извне различные вещества и микроэлементы, используемые в процессе ассимиляции.
Ассимиляция – это процесс, состоящий в формировании соединений, а также составных частей клетки. Данные реакции иначе именуются анаболизм или пластический обмен. Примером ассимиляции может быть образование белковых молекул.
Любые реакции синтеза проходят с расходом энергии. Источником ее выступают ранее образованные соединения, находящиеся в клетке. Они подвергаются распаду вследствие протекания совокупности процессов диссимиляции.
Частично освобождающаяся энергия применяется при синтезе различных соединений, часть рассеивается с теплом или запасается.
Соответственно, диссимиляция – это процесс,заключающийся в разложении веществ с освобождением энергии.
Процесс диссимиляции в организме именуется еще катаболизм или энергетический обмен.
Ассимиляция и диссимиляция не могут существовать по отдельности. Нарушение баланса этих процессов приведет к развитию заболеваний или гибели организма. К примеру, это может выразиться в истощении или ожирении.
Метаболизм в клеточных структурах протекает при средней температуре, нормальном давлении и нейтральной среде. Из курса химии нам известно, что только повышение данных показателей приведет к ускорению реакции. При таких же условиях реакции должны протекать очень медленно. Однако, в биологических системах есть помощники метаболизма – ферменты.
Роль ферментов в метаболизме огромна. Данные структуры ускоряют реакцию без изменения ее общего результата. Причем абсолютно все процессы в организме протекают при участии ферментов. К примеру, под их действием происходит разложение пищи на составные компоненты.
Исходя из значения ферментов в метаболизме можно сказать, что нарушение их образования и активности приведет к различным заболеваниям.
Энергетический обмен
Диссимиляция или энергетический обмен проходит в несколько этапов. Познакомимся с ними на схеме.
- Подготовительный этап энергетического обмена проходит в цитоплазме растительных клеток, простейших, в пищеварительной системе животных, а кроме того и человека. При этом питательные соединения под воздействием пищеварительных ферментов разлагаются до мономеров. Вследствие этого образуется незначимый объем энергии, рассеивающейся как тепло. На представленном этапе энергетического обмена синтеза АТФ не происходит.
- Вторым этапом диссимиляции веществ считается бескислородный или анаэробный. Проходит данная стадия в цитоплазме клеток, заключается в разложении мономеров, образовавшихся на предварительной стадии.
Примером подобного процесса считается гликолиз – многоступенчатое расщепление глюкозы. Мономеры углеводов подвергаются распаду в отсутствии кислорода с освобождением энергии, определенное количество которой расходуется для формирования АТФ.
При протекании ряда последовательных этапов гликолиза совершается разложение молекулы глюкозы на две молекулы пировиноградной кислоты. Чаще всего, пировиноградная кислота затем преобразуется в молочную кислоту. Вследствие этих реакций в ходе гликолиза из АДФ, а также фосфорной кислоты синтезируются 2 молекулы АТФ.
Следует учесть, что по такому принципу гликолиз протекает в клетках животных и человека.
В растительных клетках, в отдельных дрожжевых грибах, у бактерий бескислородный этап осуществляется как спиртовое брожение.
В реакции спиртового брожения могут вступать всевозможные соединения. Например, углеводы, органические кислоты, спирты, аминокислоты и многие другие. Широкое распространение получили реакции расщепления глюкозы при молочнокислом, а также спиртовом брожении.
У молочнокислых бактерий спиртовое брожение сопровождается ферментативным расщеплением глюкозы и продуктом является молочная кислота.
Суммарные уравнения молочнокислого и спиртового брожения рассмотрим на рисунке.
Вследствие бескислородной стадии энергетического обмена вещества распадаются не до конечных продуктов, а до соединений с запасом энергии. Поэтому они переходят в следующий этап – кислородный.
3. Третья стадия энергетического обмена получила название аэробного или кислородного.В течение данных реакций осуществляется последующее разложение органических соединений до конечных продуктов. Характерен он только аэробным организмам, использующим для метаболизма кислород.
Происходит кислородный распад в митохондриях, поэтому именуется еще клеточным дыханием. Протекает оно в несколько поочередных стадий. Основным признаком клеточного дыхания является участие кислорода в распаде соединений.
В процессе клеточного дыхания осуществляется дальнейшее окисление пировиноградной кислоты с формированием двуокиси углерода и воды.
Данный этап считается заключительным, поэтому при клеточном дыхании выделяется внушительное число энергии в виде 36 молекул АТФ.
Вследствие процесса энергетического обмена веществ при окислении одной молекулы глюкозы формируется 38 молекул АТФ. Эта энергия используется на другие химические реакции. К примеру, у человека каждая молекула АТФ расщепляется и вновь создается 2400 раз в сутки, то есть средняя продолжительность жизни АТФ менее минуты.
Питание клетки
Для протекания метаболизма в клетке необходимы различные питательные вещества, которые организм получает в результате питания.
Все живые организмы различаются по тому, какую пищу они используют. Некоторые организмы способны сами производить вещества, другие же в процессе питания клетки потребляют уже готовые.
Различают несколько разновидностей организмов по способу питания клетки:
1. Автотрофы сами производят органические вещества. Для осуществления процессов синтеза они используют простые неорганические соединения – углекислый газ и воду. Источником энергии для протекания ассимиляции в клетке у автотрофов является солнечный свет или энергия химических взаимодействий.
Организмы, использующие солнечный свет для формирования органических соединений получили название фототрофы. Этим существам характерен фотосинтез, протекающий в хлоропластах. Соответственно, фототрофами являются все зеленые растения. Помимо этого, примером фототрофов считаются цианобактерии, зеленые и пурпурные бактерии.
Организмы, которые для производства органических соединений используют энергию химических взаимодействий, называются хемотрофами.
Хемотрофами являются некоторые бактерии, к примеру, железобактерии, серобактерии, нитрифицирующие бактерии.
Гетеротрофы используют в пищу готовые органические вещества. Вследствие такого питания гетеротрофы получают энергию, требуемую для жизненных процессов, а также служат источником строительного материала для клеточных структур. Гетеротрофами являются все животные, грибы и большинство бактерий.
Вдобавок есть организмы, применяющие для питания клетки автотрофный и гетеротрофный способ. К этим организмам относится эвглена зеленая. У нее есть хлоропласты и она может сама производить вещества для питания клетки как автотрофы. Однако в темноте, ее питание осуществляется гетеротрофным способом как у животной клетки.
Фотосинтез
Одним из примеров ассимиляции является процесс фотосинтеза у растений.
Фотосинтез происходит в фотосинтезирующем пигменте хлорофилле хлоропластов листа. Данный пигмент считается чрезмерно активным соединением и реализует поглощение света, начальный запас энергии, также последующая ее трансформация в химическую энергию.
Принято выделять световую и темновую фазы фотосинтеза. Остановимся детальнее на них.
Световая фаза совершается в мембранах хлоропластов. Наступает световая фаза фотосинтеза с поглощения кванта света молекулой хлорофилла. Один из электронов хлорофилла переводится на высочайший энергетический уровень и вступает в возбужденном состоянии. Электроны с большим избытком энергии активизируют разложение воды. Данная процедура, протекающая на начальной стадии фотосинтеза, приобрела наименование фотолиз воды.
В итоге распада совершается отдача гидроксид-ионом (OH — ) своего электрона, а также превращение его в радикал (OH). Радикалы объединяются и формируют воду, свободный кислород. Далее в процессе светового фотосинтеза электрон от гидроксид-иона снова попадает в молекулу хлорофилла, замещая удалившийся электрон. Вследствие этого освобождается энергия, идущая для формирования АТФ.
В процессе световой фазы фотосинтеза совершается превращение световой энергии в химическую энергию макроэргических связей молекулы АТФ. В данной фазе фотосинтеза осуществляется выброс кислорода, являющегося второстепенным продуктом. Он может употребляться дальше растительными клетками при дыхании или выделяться в биосферу.
2. В момент темновой фазы фотосинтеза проистекают трудоемкие ферментативные взаимодействия. Основой считается трансформация молекул углекислого газа до органических соединений. Протекает данная стадия в строме хлоропластов в присутствии продуктов световой реакции.
Основным признаком темновой фазы фотосинтеза считается отсутствие солнечного света.
Начинается данная стадия с проникновения углекислого газа в листья через устьица. Затем он соединяется со своеобразным веществом – акцептором, которым выступает при фотосинтезе пятиуглеродный сахар – рибулозодифосфат. Вследствие этого формируется нестойкое соединение, разлагающиеся на 2 молекулы фосфороглицериновой кислоты. Эти молекулы подвергаются воздействию продуктов светового фотосинтеза, в частности АТФ.
Впоследствии, посредством некоторых переходных стадий, создаются углеводы, а также прочие органические соединения. Данный процесс трансформации углекислого газа в углеводы в темновой фазе фотосинтеза приобрел наименование цикла Кальвина.
В темновом фотосинтезе энергия макроэргических связей АТФ трансформируется в химическую энергию органических соединений. Данные вещества служат пищей для гетеротрофов.
Соответственно, первостепенными веществами темнового и светового фотосинтеза считаются кислород, а также углеводы.
Благодаря данному процессу возможно существование всех живых существ на Земле. Ведь он является одним источником свободного кислорода.
Хемосинтез
Помимо фотосинтеза имеется еще один процесс автотрофной ассимиляции – хемосинтез, типичный отдельным видам микроорганизмов.
Основой энергии для хемосинтеза здесь служит не свет, а окисление отдельных неорганических соединений. Открытие хемосинтеза у таких организмов как бактерии принадлежит русскому ученому С.Н. Виноградскому.
Важнейшей группой данного типа питания считаются нитрифицирующие бактерии. Они могут окислять возникающий при гниении остатков аммиак до нитрита, а также до нитрата. Вследствие этого совершается освобождение энергии, нужной нитрифицирующим бактериям для жизненных функций.
Хемотрофные нитрифицирующие бактерии массово встречаются в природной среде. Они находятся в почве, в различных водоемах. Исполняемые ими процессы считаются частью круговорота азота.
Серобактерии – это еще одни существа, способом питания которых является хемосинтез. Вследствие этого они окисляют сероводород и накапливают в своих клетках серу.
К серобактериям относятся многие автотрофные пурпурные, а также зеленые бактерии.
Серобактерии являются разрушителями горных пород, в связи с формированием серной кислоты в ходе питания. Выделяемая ими едкая жидкость активизирует порчу различных сооружений.
Многочисленные типы серобактерий в ходе питания образуют всевозможные производные серы. Это способствует очищению промышленных сточных вод.
В процессе питания железобактерии переводят железо (II) в железо (III). Освободившаяся энергия употребляется с целью восстановления углекислого газа до органических соединений.
Хемосинтетики – единственные организмы, жизнь которых не связана с освещением. Соответственно они способны существовать в различных местах, осваивая глубины океана или недра земли.
Источник