- Периодическая дробь
- Перевод периодической дроби в обыкновенную
- Узнать ещё
- Из периодической дроби — в обыкновенную
- 2 комментария на «Из периодической дроби — в обыкновенную»
- Перевод бесконечной периодической дроби в обыкновенную дробь
- Определение периодической дроби
- Виды периодических дробей
- Как перевести периодическую дробь в обыкновенную
- Алгоритм перевода чистой периодической дроби в обыкновенную
- Алгоритм перевода смешанной периодической дроби в обыкновенную
- Пример перевода бесконечной периодической десятичной дроби в обыкновенную дробь
- Периодические дроби
- Получаем периодическую дробь
- Виды периодических дробей
- Избавляемся от хвоста
- Перевод чистой периодической дроби в обыкновенную дробь
- Перевод смешанной периодической дроби в обыкновенную дробь
- 32 thoughts on “Периодические дроби”
Периодическая дробь
Не все обыкновенные дроби можно представить в виде конечной десятичной дроби.
Например, если делить 2 на 3 , то сначала получим ноль целых, потом шесть десятых, а затем при делении всё время будет повторяться остаток 2 , а в частном — цифра 6 .
Такое деление закончить без остатка невозможно и поэтому дробь
2 |
3 |
нельзя представить в виде конечной десятичной дроби.
Если в записи десятичной дроби одна цифра или группа цифр начинают повторяться бесконечно много раз, такую дробь называют периодической дробью.
В краткой записи периодической дроби повторяющуюся цифру (или группу цифр) пишут в скобках. Эту цифру (или группу цифр) называют периодом дроби.
Вместо 0,666… пишут 0,(6) и читают «ноль целых и шесть в периоде».
Перевод периодической дроби в обыкновенную
Периодическую бесконечную десятичную дробь можно перевести в обыкновенную дробь.
Рассмотрим периодическую дробь 10,0219(37)
- Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву « k ». У нас « k = 2 ».
- Считаем количество цифр, стоящих после запятой, но до периода десятичной дроби. Обозначаем количество цифр за букву m . У нас « m = 4 ».
- Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа.
Если вначале, до первой значащей цифры, идут нули, то отбрасываем их. Обозначаем полученное число буквой « a ».
a = 021937 = 21 937
b = 0219 = 219
Итак, подставляем все найденные значения в формулу выше и получаем обыкновенную дробь. Полученный ответ всегда можно проверить на обычном калькуляторе.
Источник
Узнать ещё
Знание — сила. Познавательная информация
Из периодической дроби — в обыкновенную
Переход из периодической дроби — в обыкновенную легко осуществляется с помощью формулы суммы бесконечно убывающей геометрической прогрессии.
Перевести из периодической дроби в обыкновенную:
1) 0,444…; 2) 2,(36); 3) 5,1(6).
Правая часть равенства представляет собой сумму бесконечно убывающей геометрической прогрессии. b1=0,4, b2=0,04. Находим знаменатель геометрической прогрессии
По формуле суммы бесконечно убывающей геометрической прогрессии
Этот способ перевода периодической дроби в обыкновенную хорош тем, что не нужно учить дополнительное правило, достаточно помнить простую формулу суммы бесконечно убывающей геометрической прогрессии.
2 комментария на «Из периодической дроби — в обыкновенную»
Пример2.Сколько цифр в периоде?Две?Значит.в знаменатель обыкновенной дроби пишем 2 девятки.А в числитель период.А потом попробуем сократить дробь.
Пример 1.Тут проще.Одна девятка в знаменателе и четверка
Пример 3.Сначала отделяем цифры перед периодом и записываем дробь 5+1/10.Затем в знаменатель пишем столько девяток,сколько цифр в периоде,и добавляем столько нулей,сколько цифр перед периодом.Ну а в числитель пишем период.
Ну это кому как.Кто-то сумму бесконечно убывающей прогрессии запомнит лучше(хотя там со знаменателем надо не промахнуться),а кто-то лучше поймет девятки и нули.Нельзя сказать,чей метод лучше.Большинство оценит,наверное.ваше предложение.
Хорошо, что такие сайты, как этот существуют! Как же раздражает, когда тебе суют какие-то странные правила, которые не понять откуда взялись. Спасибо
Источник
Перевод бесконечной периодической дроби в обыкновенную дробь
С помощью нашего калькулятора вы сможете перевести бесконечную периодическую десятичную дробь перевести в обыкновенную дробь или смешанное число с подробным пошаговым решением.
Определение периодической дроби
Периодическая дробь — это бесконечная десятичная дробь в записи которой с определённого места бесконечно повторяется определённая группа цифр. Например 2.2(3), 0.(7). Цифры в скобках называются периодом дроби .
Виды периодических дробей
Чистая периодическая десятичная дробь — это дробь в записи которой после точки сразу идёт периодическая часть. Например 1.(5), 0.(14), 12.(3).
Смешанная периодическая десятичная дробь — это дробь в записи которой между точкой и периодической частью присутствует одна или более цифр. Например 4.14(3), 0.51(34).
Как перевести периодическую дробь в обыкновенную
Алгоритм зависит от вида периодической дроби, чистая или смешанная дробь.
Алгоритм перевода чистой периодической дроби в обыкновенную
С алгоритмом перевода лучше разбираться на примере, переведём периодическую чистую дробь 0.(23) в обыкновенную.
- 1) Нужно обозначить дробь за x. x = 0.(23)
- 2) Затем равенство умножить на такое число, чтобы период стал целым числом. Т.е. в данном случае на 100. 100x = 23.(23)
- 3) Вычтем исходное равенство из полученного. 100x-x=23.(23)-0.(23), 99x=23
- 4) Вычислить x. x=23/99
Алгоритм перевода смешанной периодической дроби в обыкновенную
С алгоритмом перевода лучше разбираться на примере, переведём периодическую смешанную дробь 0.9(6) в обыкновенную.
- 1) Нужно обозначить дробь за x. x = 0.9(6)
- 2) Затем равенство умножить на такое число, чтобы период стал целым числом. Т.е. в данном случае на 100. 100x = 96.(6)
- 3) Затем равенство умножить на такое число, чтобы числа до периода оказались в целой части. Т.е. в данном случае на 10. 10x = 9.(6)
- 4) Вычтем равенства. 100x-10x=96.(6)-9.(6), 90x=87
- 5) Вычислить x. x=87/90=29/30
Пример перевода бесконечной периодической десятичной дроби в обыкновенную дробь
Переведём дробь 0.5(3)
- 1) Обозначим дробь за x. x = 0.5(3)
- 2) Затем равенство умножить на такое число, чтобы период стал целым числом. Т.е. в данном случае на 100. 100x = 53.(3)
- 3) Затем равенство умножить на такое число, чтобы числа до периода оказались в целой части. Т.е. в данном случае на 10. 10x = 5.(3)
- 4) Вычтем равенства. 100x-10x=53.(3)-5.(3), 90x=48
- 5) Вычислить x. x=48/90=8/15
Переведём дробь 0.(1)
- 1) Обозначим дробь за x. x = 0.(1)
- 2) Затем равенство умножить на такое число, чтобы период стал целым числом. Т.е. в данном случае на 10. 10x = 1.(1)
- 3) Вычтем равенства. 10x-x=1.(1)-0.(1), 9x=1
- 4) Вычислить x. x=1/9
Источник
Периодические дроби
Существуют дроби, у которых в дробной части некоторые цифры бесконечно повторяются. Выглядят эти дроби следующим образом:
Дроби такого вида называют периодическими. В данном уроке мы попробуем разобраться, что это за дроби и как с ними работать.
Получаем периодическую дробь
Попробуем разделить 1 на 3. Не будем подробно останавливаться на том, как это сделать. Этот момент подробно описан в уроке действия с десятичными дробями, в теме деление меньшего числа на большее. Продвинутый уровень.
Итак, делим 1 на 3
Видно, что мы постоянно получаем остаток 1, далее приписываем к нему 0 и делим 10 на 3. И это повторяется вновь и вновь. В результате в дробной части каждый раз получается цифра 3. Деление 1 на 3 будет выполняться бесконечно, поэтому разýмнее будет остановиться на достигнутом.
Такие дроби называют периодическими, поскольку у них присутствует период цифр, который бесконечно повторяется. Период цифр может состоять из нескольких цифр, а может состоять из одной как в нашем примере.
В примере, который мы рассмотрели выше, период в дроби 0,33333 это цифра 3. Обычно такие дроби записывают сокращённо. Сначала записывают цéлую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется).
В нашем примере повторяется цифра 3, она является периодом в дроби 0,33333. Поэтому сокращённая запись будет выглядеть так:
Читается как «ноль целых и три в периоде»
Пример 2. Разделить 5 на 11
Это тоже периодическая дробь. Период данной дроби это цифры 4 и 5, эти цифры повторяются бесконечно. Сокращённая запись будет выглядеть так:
Читается как «ноль целых и сорок пять в периоде»
Пример 3. Разделить 15 на 13
Здесь период состоит из нескольких цифр, а именно из цифр 153846. Для наглядности период отделён синей линией. Сокращённая запись для данной периодической дроби будет выглядеть так:
Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде».
Пример 4. Разделить 471 на 900
В этом примере период начинается не сразу, а после цифр 5 и 2. Сокращённая запись для данной периодической дроби будет выглядеть так:
Читается как: «ноль целых пятьдесят две сотых и три в периоде».
Виды периодических дробей
Периодические дроби бывают двух видов: чистые и смéшанные.
Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:
Видно, что в этих дробях период начинается сразу после запятой.
Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смéшанной. Например, следующие периодические дроби являются смéшанными:
Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.
Избавляемся от хвоста
Подобно тому, как ящерица избавляется от хвоста, мы можем избавить периодическую дробь от повторяющегося периода. Для этого достаточно округлить эту периодическую дробь до нýжного разряда.
Например, округлим периодическую дробь 0, (3) до разряда сотых. Чтобы увидеть сохраняемую и отбрасываемую цифру, временно запишем дробь 0, (3) не в сокращённом виде, а в полном:
Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.
Значит периодическая дробь 0, (3) при округлении до сотых обращается в дробь 0,33
Округлим периодическую дробь 6,31 (6) до разряда тысячных.
Запишем эту дробь в полном виде, чтобы увидеть сохраняемую и отбрасываемую цифру:
Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.
Значит периодическая дробь 6,31 (6) при округлении до тысячных обращается в дробь 6,317
Перевод чистой периодической дроби в обыкновенную дробь
Перевод периодической дроби в обыкновенную это операция, которую мы будем применять довольно редко. Тем не менее, для общего развития желательно изучить и этот момент. А начнём мы с перевода чистой периодической дроби в обыкновенную дробь.
Мы уже говорили, что если период в периодической дроби начинается сразу после запятой, то такую дробь называют чистой.
Чтобы перевести чистую периодическую дробь в обыкновенную дробь, нужно в числитель обыкновенной дроби записать период периодической дроби, а в знаменатель обыкновенной дроби записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби.
В качестве примера, рассмотрим чистую периодическую дробь 0, (3) — ноль целых и три в периоде. Попробуем перевести её в обыкновенную дробь.
Правило гласит, что в первую очередь в числитель обыкновенной дроби нужно записать период периодической дроби.
Итак, записываем в числителе период дроби 0, (3) то есть тройку:
А в знаменатель нужно записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (3).
В периодической дроби 0, (3) период состоит из одной цифры 3. Значит в знаменателе обыкновенной дроби записываем одну девятку:
Полученную дробь можно сократить на 3, тогда получим следующее:
Получили обыкновенную дробь .
Таким образом, при переводе периодической дроби 0, (3) в обыкновенную дробь получается
Пример 2. Перевести периодическую дробь 0, (45) в обыкновенную дробь.
Здесь период составляет две цифры 4 и 5. Записываем эти две цифры в числитель обыкновенной дроби:
А в знаменатель записываем некоторое количество девяток. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (45).
В периодической дроби 0, (45) период состоит из двух цифр 4 и 5. Значит в знаменателе обыкновенной дроби записываем две девятки:
Полученную дробь можно сократить эту дробь на 9, тогда получим следующее:
Таким образом, при переводе периодической дроби 0, (45) в обыкновенную дробь получается
Перевод смешанной периодической дроби в обыкновенную дробь
Чтобы перевести смешанную периодическую дробь в обыкновенную дробь, нужно в числителе записать разность в которой уменьшаемое это цифры, стоящие после запятой в периодической дроби, а вычитаемое — цифры, стоящие между запятой и первым периодом периодической дроби.
В знаменателе же нужно записать некоторое количество девяток и нулей. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби, а количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.
Например, переведём смешанную периодическую дробь 0,31 (6) в обыкновенную дробь.
Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:
Итак, записываем в числителе разность:
А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,31 (6)
В дроби 0,31 (6) период состоит из одной цифры. Значит в знаменатель дроби записываем одну девятку:
Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.
В дроби 0,31 (6) между запятой и периодом располагается две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:
Получили выражение, которое вычисляется легко:
Получили ответ
Таким образом, при переводе периодической дроби 0,31 (6) в обыкновенную дробь, получается
Пример 2. Перевести смешанную периодическую дробь 0,72 (62) в обыкновенную дробь
Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:
Итак, записываем в числителе разность:
А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,72 (62)
В дроби 0,72 (62) период состоит из двух цифр. Значит в знаменатель дроби записываем две девятки:
Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.
В дроби 0,72 (62) между запятой и периодом располагаются две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:
Получили выражение, которое вычисляется легко:
Получили ответ
Значит при переводе периодической дроби 0,72 (62) в обыкновенную дробь, получается
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
32 thoughts on “Периодические дроби”
Когда же следующие уроки? Уже что-то долго ничего нету
Большое спасибо за урок! Откровенно говоря…эту тему не помню вообще…Будто ее и не было в школе О__о Ну или я ее проболела… (Перевод смешанной периодической дроби в обыкновенную дробь)
Вы бы хоть номер кошелька написали. А то столько трудились и никакой отдачи. С такими уроками никакой экзамен не страшен.
Спасибо большое Тэла, за столь добрый отзыв 😉
Если люди получают пользу от этих уроков — это уже отдача)
Огромное Вам спасибо за уроки! Всё объясняете доступно и наглядно! На ваших уроках готовлюсь поступать на ФИТ на программиста. Хорошо бы еще алгебру выложили.)
Вы не могли бы объяснить логику алгоритма перевода периодической дроби в обычную?
Зачем в знаменателе ставятся девятки — заместно, например, округления числа, подставляемого в числитель, до последней цифры периода, и постановки степени 10 в знаменатель? Зачем, при переводе смешанной периодической дроби, производится соотв. вычитание и чем объясняется подстановка нулей и единиц в зависимости от принадлежности цифры к периоду??…
При делении числителя и знаменателя обыкновенной дроби , которая была превращена из периодической , то получается как раз таки период
Спасибо большое за урок 🙂 Скажите пожалуйсто при округлении(когда избавляемся от хвоста) откуда знать до каких разряд надо округлять?
Вот и здесь последняя задача говорит округлить до разряда сотых,а почему не до десятых(например)?
зависит от задачи, которую решаете. Если в задаче сказано округлять до десятых, значит округляете до десятых. Если сказано округлять до сотых — округляете до сотых
Спасибо за ответ . Я даже не знаю как вас зовут,но уверен вы очень хороший человек,раз вы уделяете время для других. Кстати я советую друзья посешать этот сайт,как тут нигде не обясняют.
Источник