Способы передачи звукового сигнала

Чем развлечься в самоизоляции, или передаем данные с помощью звуковой карты

После недавней публикации про передачу OFDM, стало интересно проверить, каким способом эффективнее всего передавать данные по воздуху. Мы попробуем разные виды модуляции, и посмотрим какие из них лучше подойдут для передачи данных из одного конца квартиры или офиса в другой. Для тестов будет достаточно ноутбука, смартфона и программы MultiPSK.

Для тех кому интересно как это работает, продолжение под катом.

Для тестов мы воспользуемся программой MultiPSK, которая удобна тем, что поддерживает огромное количество разных стандартов связи, как любительских (они доступны как на прием, так и на передачу), так и профессиональных (доступен только прием). Разумеется, чтобы не делать статью гигантской, я выберу лишь наиболее популярные виды модуляции, и мы посмотрим что из этого получится. Изначально MultiPSK предназначена для радиосвязи, для чего звуковая карта должна подключаться к приемнику или передатчику, но ничего не запрещает воспроизводить сигнал прямо из колонок. Тест будет будет довольно простым — простой текст «1234567890» кодируется разными способами, сигнал проигрывается на ПК, и записывается смартфоном в другом конце квартиры. Разумеется, повторить нижеописанные опыты может любой желающий, никакого специального оборудования для этого не требуется.

Let’s get started.

Частотная модуляция (FSK, Frequency Shift Keying)

Как нетрудно догадаться из названия, суть модуляции заключается в изменении частоты сигнала. Простейший способ, доступный в MultiPSK, это RTTY. В данном случае мы передаем данные с помощью переключения между двумя частотами с определенной скоростью. На спектре это видно весьма наглядно. Посмотрим, что происходит с сигналом при его передаче по воздуху. Сверху исходный сигнал, снизу принятый:

Помимо очевидного затухания, есть более неочевидное изменение амплитуды — сигнал стал «рваным», на выходе получилось что-то вроде биений. Интересно то, что проявляются они в моменты смены частоты, в моменты когда частота не меняется, изменения амплитуды минимальны. С чем это связано, сказать сложно.

Кстати о спектре, он исказился, хотя в принципе, форму сигнала угадать можно:

Посмотрим, сможет ли MultiPSK декодировать записанный звук. Увы, нет, на выходе лишь «мусор». Разные попытки нормализации и фильтрации к успеху также не привели:

Следующий сигнал, который интересно попробовать — MFSK, частотная модуляция, в которой количество частот больше 2х. Картинка «до» и «после» передачи примерно похожа на предыдущий результат.

Мы также видим биения амплитуды, возникающие вероятно, в процессе переотражения звука. Но есть заметный плюс — при большем количестве частот, декодирование сигнала происходит гораздо увереннее. За исключением «мусора» в паузе между сигналами, сами данные принимаются без ошибок.

Возможно, это также связано со скоростью передачи или другим алгоритмом декодирования, но результат довольно-таки интересен.

Фазовая модуляция (PSK, Phase Shift Keying)

Следующий вид модуляции — фазовая, при которой передается синусоидальный сигнал, а информация кодируется изменением фазы.

Сигнал BPSK «до» и «после» передачи:

Результат распознавания: определилось где-то 20-40% символов, из строки 1234567890, как можно видеть, можно различить 3, 4, 7 и 9.

Спектр не показан, т.к. для фазовой модуляции BPSK он представляет собой практически прямую линию.

Читайте также:  Способ быстро варки кукурузы

Общая идея, я думаю, понятна, и более сложные виды сигналов рассматривать смысла нет — понятно что устойчивого декодирования не будет. Однако, чисто для «спортивного интереса», рассмотрим аналоговый сигнал.

SSTV (Slow Scan Television)

Этот режим по своей сути напоминает факс, и изменение частоты здесь кодирует яркость или цвет картинки во времени. Интересно посмотреть, насколько исказится изображение после передачи, и останется ли оно читабельным.

Сигнал «до» и «после»:

Картинка с котиком, и попытка её приема:

При должной фантазии, контур котика наверное можно угадать. Хотя если передавать что-нибудь попроще, типа «черного квадрата», наверное распознать изображение будет легче. Кстати, в этом один из плюсов аналоговой передачи данных перед цифровой — там где «цифра» уже перестанет работать, в аналоге, среди шумов, человеческий глаз или ухо вполне может уловить полезный сигнал.

Дополнение: частотная и временная характеристики

Кстати об аналоговом сигнале, как подсказали в комментариях, проверить амплитудно-частотную характеристику «канала передачи» можно, если воспроизвести белый шум и изменяющийся по высоте тон. Такой сигнал несложно сгенерировать в любом аудио-редакторе. Для теста файл был проигран в одном конце квартиры, а запись сделана в другом. Результат довольно интересен, как интересно и то, что высокие частоты не слышны вообще (в моем случае граница где-то 14КГц), а передача данных на них в принципе еще возможна:

И наконец, не менее интересный результат получается, если сгенерировать короткий звуковой импульс:

При подаче импульса длиной 0.01с, «эхо» длится практически в 10 раз дольше. Разумеется, это также должно учитываться при выборе скорости передачи данных.

Заключение

Как можно видеть, передача звука по воздуху (как наверное и через воду), это не так уж просто, из-за переотражений, затуханий и прочих эффектов. Несмотря на кажущуюся «несерьезность» задачи, надежно передать данные даже на 10 метров не так-то просто из-за искажений сигнала. Метод частотной модуляции MFSK оказался самым стабильным. И похоже, аналогичные опыты проводил не только я, статья о протоколе активации Яндекс-станции говорит о том, что в ней используется такой же способ передачи данных. Ну а в целом, чем проще модуляция и меньше скорость, тем больше шансов, что данные будут приняты без ошибок.

Желающие могут дальше поэскпериментировать самостоятельно, программу MultiPSK легко найти в интернете, количество поддерживаемых ею стандартов передачи довольно велико.

Источник

Как данные передаются по радио?

В одном из комментариев к предыдущим статьям был задан вопрос, можно ли по виду сигнала определить вид его модуляции. Идея рассмотреть основные виды модуляции показалась довольно-таки интересной.

Попробуем разобраться, без формул и максимально просто, как можно передать данные из точки «А» в точку «В».

OOK (On-Off Keying)

Самый простой вид цифрового кодирования. Просто включаем-выключаем передатчик в соответствии с двоичным сигналом:

На спектре такой сигнал выглядит примерно так, их довольно много на частоте

Схема передатчика очень проста, поэтому активно используется в беспроводных пультах, радиокнопках и прочих устройствах ценой 1-2$. Никакого шифрования здесь обычно нет, частота и битовая последовательность жестко «зашиты», передать и принять сигнал может любой желающий, так что ставить такой пульт на дверь гаража, где стоит Lamborgini, я бы не стал, но для ночника у кровати вполне сойдет (такая лампа, купленная в ближайшем MediaMarkt, работает у меня 3 года, ложных срабатываний не было ни разу, принцип «неуловимого Джо» в действии).

Интересно отметить, что исторически это наверное один из самых первых способов радиопередачи. Если включать-выключать передатчик с помощью ключа и принимать сигнал на слух или на бумажную ленту, мы получим старую добрую азбуку Морзе.

Читайте также:  Способы заворачивания сдобных булочек

Амплитудная модуляция (АМ)

АМ мы наверное сможем видеть еще долго — модуляция используется как в вещательных станциях, так и в передатчиках авиадиапазона 118-137 МГц. Отличительная особенность АМ — спектр симметричен относительно центральной частоты. «На глаз» даже можно примерно понять, что передается, речь или музыка. Скриншот из онлайн приемника Websdr Twente:

Исторически АМ был одним из первых способов приема и передачи речи — всем известная «школьная» схема детекторного приемника отличалась крайней простотой, и даже не требовала батареек для приема — для работы высокоомных наушников было достаточно энергии радиоволн. Любопытно, что такие приемники выпускались в СССР серийно аж до 60х годов:

Детекторный приемник «Комсомолец» (с) Википедия

Видимо, с доступностью как приемников, так и источников питания в глубинке были определенные проблемы, так что детекторный приемник долго оставался актуален.

Однополосная модуляция (USB, LSB, SSB)

Однополосная модуляция является частным случаем амплитудной. Как было сказано выше, спектр АМ сигнала симметричен относительно центра. Но можно передавать лишь «одну половину» сигнала, что обеспечивает большую дальность при той же мощности передатчика:


Однополосная модуляция (с) Википедия

Как видно из картинки, можно настроиться на верхнюю или нижнюю боковую полосу, такой режим в приемнике или передатчике соответственно обозначается USB или LSB.

В режиме однополосной модуляции работают служебные станции, передаются метеосводки на коротких волнах, также он используется радиолюбителями. Но не менее важен он еще и тем, что в режиме USB или LSB спектр сигнала фактически переносится с радиочастоты на звуковую без искажений — что позволяет принимать различные виды цифровых сигналов, рассмотренных ниже. Это важно иметь в виду при выборе радиоприемника — цифровые виды связи (FSK, PSK и пр) могут приниматься и декодироваться лишь в режиме однополосной модуляции, простой бытовой приемник с поддержкой «обычной» AM принять такие сигналы не сможет.

Частотная модуляция (FM)

В частотной модуляции работает всем известное FM-вещание. Интересно отметить, что в передатчике FM-станции кодируется не только звук — передается сложный сигнал, включающий моно и стерео каналы, пилот-тон, RDS и пр. Чтобы не путать с «обычной» FM, у инженеров такая модуляция обычно называется WFM (Wide FM). В программе HDSDR несложно увидеть спектр радиостанции после декодирования:

На сигнале (справа снизу) несложно видеть пилот-тон на частоте 19 КГц, RDS, моно и стерео-каналы FM-вещания. В отличие от WFM, радионяни, рации и прочие аналогичные устройства используют «узкую» FM (NFM, Narrow FM) модуляцию, где передается только звук.

Частотная модуляция активно используется и для цифровых сигналов, в этом случае для передачи бинарного кода может использоваться переключение двух частот. В качестве примера можно привести сигнал немецкой станции Pinneberg, наличие двух частот хорошо видно на спектре:

Pinneberg передает метеосводки судам на длинных, средних и коротких волнах. Частот в принципе, может быть и больше 2х. Пример такого сигнала — радиолюбительский FT8:

С помощью FT8 радиолюбители могут обмениваться короткими сообщениями на расстоянии в несколько тысяч километров при мощности всего лишь несколько ватт.

Интересно, что модуляция может быть и комбинированной — например в авиации используется система ACARS, передающая текстовые сообщения. Цифровой FM сигнал передается через АМ передатчик. Зачем так сложно? Вероятно, используется уже готовый передатчик, ко входу которого просто подключили цифровую схему, формирующую FM-сигнал. Legacy в чистом виде, но вероятно, это дешевле, чем менять миллионы передатчиков в аэропортах и самолетах во всем мире.

Читайте также:  Какими способами следует соединять сварочные провода

Фазовая модуляция (PSK)

Кроме частоты, мы можем менять и фазу сигнала, что дает нам фазовую модуляцию. Такие сигналы могут уверенно приниматься на больших расстояниях, и используются в частности, в спутниковой связи. Из радиолюбительских протоколов можно отметить PSK31, который одно время был весьма популярен.

С помощью PSK31 можно обмениваться информацией в виде «текстового чата», подключив трансивер к компьютеру. Фаз может быть больше 2х, например 4, 18 или 16, все зависит от скорости и канала связи.

Можно менять и фазу и амплитуду одновременно, что дает нам еще большую скорость, но требует более сложного кодирования и декодирования. В качестве примера такого сигнала можно привести QAM. Такой сигнал наглядно проще всего изобразить на фазовой плоскости:

Модуляция QAM используется при передаче данных в стандарте LTE и в цифровом телевидении DVB-T.

Orthogonal frequency-division multiplexing (OFDM)

Одним из современных методов модуляции является OFDM. Его суть состоит в том, что отдельные биты сигнала можно передавать параллельно, представляя сигнал в виде независимо работающих частотных каналов (subcarriers), каждый из которых передает свой отдельный бит. Есть определенные математические правила, гарантирующие что каналы не будут пересекаться и могут быть декодированы.

В качестве примера можно привести DRM, сигналы такого формата можно увидеть на вещательных диапазонах, разница между АМ и DRM хорошо видна на спектре:

Это цифровой сигнал шириной 10 КГц, в котором параллельно передается 206 несущих с интервалом 47 Гц. Стандарт DRM (Digital Radio Mondiale) используется для передачи цифрового радио на средних и коротких волнах, просьба не путать с другим стандартом Digital Rights Management.

OFDM используется и в WiFi (802.11a), структура сигнала там сложнее, желающие могут изучить PDF самостоятельно.

Code-division multiple access (CDMA)

Другой способ широкополосной передачи — разделение данных. Данные для нескольких получателей могут быть комбинированы в один сигнал с помощью специальной функции (например Walsh code), которая гарантирует как прямое, так и обратное преобразование. Одним из ключевых факторов и в OFDM и в CDMA является так называемая «ортогональность», получаемые сигналы не должны «смешиваться», чтобы из результирующего сигнала можно было извлечь исходные данные.

Кодирование CDMA используется в мобильных сетях 3G. Хороший пример разбора CDMA с помощью ручки и бумаги можно найти здесь, интересующимся рекомендую посмотреть.

Заключение

Все что приведено выше, это разумеется, очень краткое объяснение «на пальцах», в реальности, описание только одного декодера может занять в несколько раз больше текста чем вся статья целиком, да и вряд ли многим здесь это нужно — Хабр это все же не научный журнал. Впрочем, общее впечатление у читателей надеюсь все же осталось. При наличии интереса у аудитории (что будет определяться по оценкам текста:) какой-либо из сигналов можно будет разобрать более подробно.

В завершение интересно отметить, что различные схемы кодирования — это не просто какая-то математическая абстракция — все это активно используется, в том числе и в военных целях (например протокол STANAG модемов NATO). Этот скриншот сделан во время написания текста с помощью онлайн-приемника Websdr:

Как можно видеть, несмотря на наличие интернета практически в любой обитаемой точке планеты, возможность передать данные напрямую, анонимно и без посредников, весьма актуальна — каждая линия на графике это работающий прямо сейчас канал связи (и да, внимательные читатели могут заметить здесь даже сигналы азбуки морзе, несмотря на 2020 год).

Источник

Оцените статью
Разные способы