Способы передачи тепла термодинамика

Способы передачи тепловой энергии

Передачу тепловой энергии называют теплопередачей. Есть три способа (рис. 1) передачи тепловой энергии:

С помощью теплопередачи можно изменять внутреннюю энергию тел.

Что такое теплопроводность

Теплопроводность — это передача (внутренней) тепловой энергии от одной части тела к другой его части.

Примечание: С помощью теплопроводности можно передавать тепловую энергию от одного тела к другому, если плотно прижать тела друг к другу.

При теплопроводности передается только энергия, а вещество не переносится.

Теплопроводности различных веществ отличаются. Металлы в твердом и жидком состоянии очень хорошо проводят тепло, то есть, обладают высокой теплопроводностью.

Примечание: Медь и серебро – это металлы с очень высокой теплопроводностью.

Но у остальных жидкостей теплопроводность меньше, чему твердых тел.

А у газов, например, у воздуха, теплопроводность очень мала. Поэтому пористые тела, содержащие большое количество газа, хорошо изолируют тепло.

Дом, построенный из пенобетона может иметь более тонкие стены, чем кирпичный дом.

В твердых телах тепло передается только с помощью теплопроводности.

Что такое конвекция и как она происходит

В жидкостях и газах тепло передается только с помощью конвекции. Конвекцио (лат.) – перенос.

Слои жидкости, или газа, имеющие различную температуру, могут самостоятельно перемешиваться. Этот процесс называется конвекцией.

Примечание: Конвекция — это самостоятельное перемешивание слоев жидкости, или газа, имеющих различную температуру.

Располагая руку в нескольких сантиметрах над горящей свечой, из-за конвекции мы можем ощущать тепло.

Как происходит конвекция: Более горячие слои жидкости, или газа, имеют маленькую плотность, поэтому поднимаются вверх, а их место занимают более холодные слои.

Примечание: Чтобы конвекция происходила хорошо, нужно нагревать жидкости и газы снизу.

— в чайнике нагревается вся вода, а не только находящаяся в нижней части чайника;

— воздух в помещении от пола до потолка прогревается батареями отопления, расположенными в нижней части помещения;

— дуют ветры, днем – с моря (дневной бриз), а по ночам – с суши на море (ночной бриз).

Что такое излучение

Излучение – это перенос тепловой энергии без помощи вещества. Поэтому в вакууме тепловая энергия переносится излучением.

Вакуум – это отсутствие молекул вещества в пространстве (глубокий вакуум в космосе), или, наличие небольшого количества молекул газа.

Например, в современных лабораториях можно из-под колокола откачать воздух до состояния, когда в одном кубометре пространства под колоколом будет содержаться всего несколько молекул воздуха.

Все тела могут излучать энергию. Сильно нагретые тела излучают больше энергии, чем более холодные.

Солнце – это большой раскаленный газовый шар, то есть, звезда. Солнце излучает тепло, это тепло через вакуум с помощью излучения переносится на Землю и нагревает ее поверхность и все тела, находящиеся на ней.

Известно, что черные предметы на солнце нагреваются очень быстро, а белые, почти не нагреваются.

По причине излучения более темные тела охлаждаются быстрее, чем белые.

В наши дни широкое распространение получили бытовые инфракрасные обогреватели. Эти обогреватели нагревают окружающие предметы с помощью теплового (инфракрасного) излучения.

Примечание: Теплопроводность и конвекция происходят в веществе. А излучение может переносить тепловую энергию без помощи вещества.

Источник

Термодинамика и теплопередача

Вы будете перенаправлены на Автор24

Термодинамика считается разделом физики, занимающимся изучением взаимных преобразований разнообразных видов энергии, взаимосвязанных с ее переходом в формат теплоты и работы.

Главное практическое значение термодинамики заключается в возможности расчетов тепловых эффектов реакции, предварительного указания вероятности или невероятности осуществления реакции и также условия ее прохождения.

Теплопередача является физическим процессом, чья суть будет заключаться в передаче тепловой энергии. Обмен производится между двумя телами либо их системой. Обязательным условием в таком случае станет передача тепла от сильно нагретых тел менее нагретым.

Читайте также:  Основные способы передачи мяча по баскетболу

Суть термодинамики в физике

Термодинамика, являясь составной частью теплотехники, занимается изучением законов превращений энергии в разных химических и физических процессах, которые производятся в макроскопических системах и сопровождаются при этом тепловыми эффектами.

Известны такие разновидности энергии:

  • тепловая;
  • электрическая;
  • химическая;
  • магнитная и др.

В качестве основных задач исследований в физике выделяют термодинамику биосистем и техническую термодинамику.

Техническая термодинамика, в свою очередь, занимается исследованием закономерностей взаимных превращений механической и тепловой энергий (в комплексе с теорией теплообмена) и поэтому выступает в качестве теоретического фундамента теплотехники, отсутствие которого сделало бы невозможным расчет и проектирование теплового двигателя.

Метод, задействованный в термодинамике, является феноменологическим. Явление здесь рассматривается в целом. Связь макроскопических параметров, определяющих поведение системы, устанавливается двумя началами термодинамики.

Готовые работы на аналогичную тему

Также в термодинамике существует такое важное понятие, как термодинамическая система, которую следует рассмотреть более детально, для лучшего понимания процессов термодинамики.

Термодинамическая система

Рисунок 1. Термодинамическая система. Автор24 — интернет-биржа студенческих работ

Термодинамическая система представляет собой комплекс материальных тел, пребывающих в состоянии механического и теплового взаимодействий между собой и также – с внешними телами, которые окружают систему (речь идет о внешней среде).

Выбор системы в таком случае будет произвольным и диктоваться условиями предлагаемой для решения задачи. Не входящие в систему тела получили название окружающей среды. Сама система, в то же время, отделяется от окружающей среды посредством контрольной поверхности (специальной оболочки).

Так, для простейшей системы (например, газа), который заключен под поршнем в цилиндре, в качестве внешней среды выступит окружающий воздух, а контрольных поверхностей — стенки цилиндра и сам поршень.

Взаимодействие механического и теплового типа термодинамической системы осуществляются за счет контрольных поверхностей. В процессе механического взаимодействия будет совершаться работа, выполняемая либо самой системой, или над ней.

В общем случае на систему способны воздействовать магнитные, электрические и прочие силы, под чьим воздействием ею будет совершаться работа. Данные виды работ также могут учитываться в рамках термодинамики.

Тепловое взаимодействие будет заключаться в рамках перехода теплоты между отдельными телами системы, а также — между системой и окружающей средой. В наиболее распространенных примерах теплота может подводиться к газу за счет стенок цилиндра.

В наиболее общем случае система может производить обмен со средой и веществом (вид массообменного взаимодействия). Подобная система получила название открытой). Паровые или газовые потоки в турбинах и трубопроводах представляют собой примеры открытых систем. В случае не прохождения вещества сквозь границы системы, она будет называться закрытой.

Термодинамическая система, не способная обмениваться теплотой с окружающей средой, считается теплоизолированной (или адиабатной). В качестве примера подобной системы может выступить газ, пребывающий внутри сосуда, чьи стенки покрыли идеальной тепловой изоляцией, исключающей возможность теплового обмена между газом, заключенным в сосуде, и окружающими телами (адиабатная изоляционная оболочка).

Замкнутая (изолированная) система представляет собой систему, не обменивающуюся с внешней средой ни посредством энергии, ни за счет вещества.

В качестве простейшей термодинамической системы может выступать рабочее тело, способное осуществлять взаимное превращение работы и теплоты. В двигателе внутреннего сгорания, к примеру, рабочим телом будет являться горючая смесь, которая приготовлена в карбюраторе (состоящая из бензиновых паров и воздуха).

Особенности процесса теплопередачи

Рисунок 2. Процесс теплоотдачи. Автор24 — интернет-биржа студенческих работ

Теплопередача считается той самой разновидностью явления, чье осуществление возможно и в условиях прямого контакта, и при присутствии разделяющих перегородок (где преградами могут стать использованные тела, а также, материалы среды).

Происхождение процесса тепловой передачи становится вероятным в тех случаях, когда не наблюдается состояние теплового равновесия. Иными словами, когда у одного из объектов наблюдается большая или меньшая температура, сравнительно с другим. Только в таких случаях и осуществляется передача тепловой энергии.

Ее завершение произойдет тогда, когда сама система придет в состояние теплового (или термодинамического) равновесия. Процесс будет осуществляться самопроизвольно (о чем свидетельствует второе начало термодинамики).

Читайте также:  Селектив минерализер olio ампулах способ применения

Способы теплопередачи и теплопроводность

Процесс теплопередачи можно разделить на следующие три способа, которым присуща основная природа (а внутри них выделяются определенные подкатегории со своими характерными особенностями):

  • теплопроводность (свойство определенного материального тела осуществлять перенос энергии от более нагретой к той, что похолоднее);
  • конвекция (своеобразный процесс тепловой передачи, в ходе которого частицы веществ будут перемешиваться между собой, подобное действие наблюдается в жидкостях и газах);
  • излучение (электромагнитное излучение, чье возникновение становится возможным, благодаря внутренней энергии тела. Обладает сплошным спектром, интенсивность и расположение максимума которого зависимы от температуры тела).

В основе такого явления, как теплопроводность, положен принцип хаотичного движения перемещения молекул (что представляет так называемое броуновское движение). Чем большей становится температура тела, тем активнее в нем начинают двигаться молекулы (из-за обладания большей кинетической энергией).

В процессе теплопроводности активное участие принимают атомы, электроны, молекулы. Осуществляется она в телах, чьим разным частям свойственна неодинаковая температура.

В случае способности вещества проводить тепло, можно говорить о присутствии количественной характеристики. В данном случае эта роль выполняется коэффициентом теплопроводности. Подобная характеристика демонстрирует количество теплоты, которое пройдет через единичные показатели площади и длины за единицу времени. При этом наблюдается изменение температуры тела ровно на 1 К.

Источник

Термодинамика и теплопередача. Способы теплопередачи и расчет. Теплопередача — это.

Сегодня мы попытаемся найти ответ на вопрос “Теплопередача — это. ”. В статье рассмотрим, что представляет собой процесс, какие его виды существуют в природе, а также узнаем, какова связь между теплопередачей и термодинамикой.

Определение

Теплопередача — это физический процесс, суть которого заключается в передаче тепловой энергии. Обмен происходит между двумя телами или их системой. При этом обязательным условием будет передача тепла от более нагретых тел к менее нагретым.

Особенности процесса

Теплопередача — это тот самый вид явления, который может происходить и при прямом контакте, и при наличии разделяющих перегородок. В первом случае все ясно, во втором же в качестве преград могут быть использованы тела, материалы, среды. Теплопередача будет происходить в случаях, если система, состоящая из двух или более тел, не находится в состоянии теплового равновесия. То есть, один из объектов имеет большую или меньшую температуру по сравнению с другим. Вот тогда происходит передача тепловой энергии. Логично предположить, что она завершится тогда, когда система придет в состояние термодинамического, или теплового равновесия. Процесс происходит самопроизвольно, о чем нам может рассказать второе начало термодинамики.

Теплопередача — это процесс, который можно разделить на три способа. Они будут иметь основную природу, поскольку внутри них можно выделить настоящие подкатегории, имеющие свои характерные особенности наравне с общими закономерностями. На сегодняшний день принято выделять три вида теплопередачи. Это теплопроводность, конвекция и излучение. Начнем с первой, пожалуй.

Способы теплопередачи. Теплопроводность.

Так называется свойство того или иного материального тела совершать перенос энергии. При этом она переносится от более нагретой части к той, что холоднее. В основе этого явления лежит принцип хаотичного движения молекул. Это так называемое броуновское движение. Чем больше температура тела, тем активнее в нем двигаются молекулы, поскольку они обладают большей кинетической энергией. В процессе теплопроводности участвуют электроны, молекулы, атомы. Осуществляется она в телах, разные части которых имеют неодинаковую температуру.

Если вещество способно проводить тепло, мы можем говорить о наличии количественной характеристики. В данном случае ее роль играет коэффициент теплопроводности. Эта характеристика показывает, какое количество теплоты пройдет через единичные показатели длины и площади за единицу времени. При этом температура тела изменится ровно на 1 К.

Ранее считалось, что обмен теплом в различных телах (в том числе и теплопередача ограждающих конструкций) связана с тем, что от одной части тела к другой перетекает так называемый теплород. Однако признаков его действительного существования никто так и не нашел, а когда молекулярно-кинетическая теория развилась до определенного уровня, про теплород все и думать забыли, поскольку гипотеза оказалось несостоятельной.

Читайте также:  Способы защиты гражданских прав доклад кратко

Конвекция. Теплопередача воды

Под этим способом обмена тепловой энергией понимается передача при помощи внутренних потоков. Давайте представим себе чайник с водой. Как известно, более нагретые воздушные потоки поднимаются наверх. А холодные, более тяжелые, опускаются вниз. Так почему же с водой все должно быть иначе? С ней все абсолютно так же. И вот в процессе такого цикла все слои воды, сколько бы их ни было, нагреются до наступления состояния теплового равновесия. В определенных условиях, конечно.

Излучение

Этот способ заключается в принципе электромагнитного излучения. Оно возникает благодаря внутренней энергии. Сильно вдаваться в теорию теплового излучения не станем, просто отметим, что причина здесь заключается в устройстве заряженных частиц, атомов и молекул.

Простые задачи на теплопроводность

Сейчас поговорим о том, как на практике выглядит расчет теплопередачи. Давайте решим простенькую задачу, связанную с количество теплоты. Допустим, что у нас есть масса воды, равная половине килограмма. Начальная температура воды – 0 градусов по Цельсию, конечная – 100. Найдем количество теплоты, затраченное нами для нагревания этой массы вещества.

Для этого нам потребуется формула Q = cm(t2-t1), где Q – количество теплоты, c – удельная теплоемкость воды, m – масса вещества, t1 – начальная, t2 – конечная температура. Для воды значение c носит табличный характер. Удельная теплоемкость будет равна 4200 Дж/кг*Ц. Теперь подставляем эти значения в формулу. Получим, что количество теплоты будет равно 210000 Дж, или 210 кДж.

Первое начало термодинамики

Термодинамика и теплопередача связаны между собой некоторыми законами. В их основе — знание о том, что изменения внутренней энергии внутри системы можно достичь при помощи двух способов. Первый — совершение механической работы. Второй – сообщение определенного количества теплоты. На этом принципе базируется, кстати, первый закон термодинамики. Вот его формулировка: если системе было сообщено некоторое количество теплоты, оно будет потрачено на совершение работы над внешними телами или на приращение ее внутренней энергии. Математическая запись: dQ = dU + dA.

Плюсы или минусы?

Абсолютно все величины, которые входят в математическую запись первого закона термодинамики, могут быть записаны как со знаком “плюс”, так и со знаком “минус”. Причем выбор их будет диктоваться условиями процесса. Допустим, что система получает некоторое количество теплоты. В таком случае тела в ней нагреваются. Следовательно, происходит расширение газа, а значит, совершается работа. В итоге величины будут положительными. Если же количество теплоты отнимают, газ охлаждается, над ним совершается работа. Величины примут обратные значения.

Альтернативная формулировка первого закона термодинамики

Предположим, что у нас есть некий периодически действующий двигатель. В нем рабочее тело (или же система) совершают круговой процесс. Его принято называть циклом. В итоге система вернется к первоначальному состоянию. Логично было бы предположить, что в таком случае изменение внутренней энергии будет равным нулю. Получается, что количество теплоты станет равно совершенной работе. Эти положения позволяют сформулировать первый закон термодинамики уже по-другому.

Из него мы можем понять, что в природе не может существовать вечный двигатель первого рода. То есть, устройство, которое совершает работу в большем количестве по сравнению с полученной извне энергией. При этом действия должны совершаться периодически.

Первое начало термодинамики для изопроцессов

Рассмотрим для начала изохорический процесс. При нем объем остается постоянным. А значит, изменение объема будет равно нулю. Следовательно, работа так же будет равна нулю. Выкинем это слагаемое из первого начала термодинамики, после чего получим формулу dQ = dU. Значит, при изохорическом процессе все тепло, подведенное к системе, уходит на увеличение внутренней энергии газа или смеси.

Теперь поговорим об изобарическом процессе. Постоянной величиной в нем остается давление. При этом внутренняя энергия будет изменяться параллельно совершению работы. Вот первоначальная формула: dQ = dU + pdV. Мы можем легко вычислить совершаемую работу. Она будет равна выражению uR(T2-T1). Кстати, это есть физический смысл универсальной газовой постоянной. При наличии одного моля газа и разнице температур, составляющей один Кельвин, универсальная газовая постоянная будет равна работе, совершаемой при изобарическом процессе.

Источник

Оцените статью
Разные способы