ТРИ СПОСОБА ПЕРЕДАЧИ ТЕПЛА И КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ
Передача тепла может осуществляться тремя способами:
Все эти способы теплопередачи обусловлены, разностью темпе; ратур; тепло всегда переходит от более нагретого тела к менее нагретому. Передача тепла путем теплопроводности происходит в одном и том же теле там, где в нем существует перепад температур или где соприкасаются два различных тела’с различной температурой. Как известно, передача тепла обусловливается движением молекул и атомов тела; поэтому распространение тепла теплопроводностью необходимо представить себе как следствие того, что более нагретые и поэтому колеблющиеся быстрее молекулы отдают часть своей энергии колебания соседним мо,- лекулам, колеблющимся медленнее. Таким образом происходит распространение тепла путем теплопроводности. Кроме того, в переносе тепла участвуют Электроны. Передача тепла путем теплопроводности зависит от величины температурного перепада, геометрических размеров и физических свойств тела. Эта зависимость может быть записана в удобной математической форме. Говоря о теплопроводности, следует различать установившуюся (стационарную) и неустановившуюся (нестационарную) проводимости тепла. Установившийся тепловой поток проходит через тело, температура которого в каждой точке не изменяется со вре: менем, т. е. через такое тело, температурное поле которого не зависит от времени. В этом случае через определенное сечение тела за один час проходит всегда неизменное -количество тепла. Если же у рассматриваемого тела температура изменяется повсе; местно или в отдельных его частях, то это вызывает соответствующее изменение теплового потока: он становится нестационар^- ным, т. е. зависимым от времени. При этом изменении темпера; тур изменяется и теплосодержание тела. Количество тепла, которое соответствует этому изменению теплосодержания, соответствует и отклонению от равномерного теплового потока — Далее мы увидим, что это изменение теплосодержания тела со временем вследствие соответствующего изменения температурного поля с^ь щественно усложняет математическое описание теплопроводно — 2* сти. К счастью, изменяющееся во времени температурное поле на практике встречается лишь в регенераторах и во всех процессах нагревания. Для преобладающей же части технических процессов передачи тепла теплопроводностью характерны установившиеся тепловые потоки,, которые наблюдаются при достижении стационарного состояния. В этом случае математическое описание явления очень просто. Часто неустановившийся тепловой поток можно определить приближенно, прибегая к раздельному расчету процесса аккумуляции и установившегося теплового потока.
Передача тепла конвекцией мокет происходить лишь в газах и жидкостях. Она осуществляется следующим образом: к поверхности нагрева поступают все новые и новые частички газа или жидкости, которые отдают ей свое тепло. Следовательно, тепло к поверхности нагрева переносится механическим путем (конвейерное перемещение). Естественно, что теплопередача конвекцией происходит тем интенсивнее, чем больше скорость движения частичек жидкости или газа. Если это движение поддерживается искусственно, например мешалкой или путем создания перепада давления в трубопроводах, то это соответствует искусственной, или вынужденной, конвекции. Напротив, движение, обусловленное исключительно внутренними причинами, т. е. главным образом тепловым расширением и связанным с ним появлением подъемной силы, называют свободной конвекцией.
Передача тепла излучением происходит в том случае, когда две поверхности, характеризуемые различной температурой, располагаются в пространстве одна против другой и между ними находится прозрачная для излучения среда. Для лучистого потока прозрачными являются «пустое» пространство и сухой воздух. Непрозрачными являются большинство жидкостей и горючих газов, а также различные газы в некоторых интервалах длин волн, как напримёр, СОг и водяной пар. Излучение этих газов имеет огромное значение в технике. Оно будет рассмотрено более обстоятельно в дальнейшем.
Коэффициент теплоотдачи относится к важнейшим понятиям в области теплопередачи. Он равен такому количеству тепла, которое передается теплоносителем одному квадратному метру поверхности за один час при разности температур в 1°. Размерность коэффициента теплоотдачи: ккал/м2*час° С. Количество тепла, переданное поверхности Р м2 за т часов при разности температур между поверхностью нагрева и теплоносителем (^1—^)°С,
Источник
Технология. 6 класс
Конспект урока
Технология, 6 класс
Урок 26. Преобразование и аккумулирование тепловой энергии
Перечень вопросов, рассматриваемых на уроке
- Преобразование тепловой энергии в механическую, электрическую, энергию химических связей.
- Способы передачи тепловой энергии.
- Способы аккумулирования тепловой энергии.
Излучение – процесс испускания и распространения энергии в виде волн и частиц.
Конвекция – это вид теплообмена, при котором внутренняя энергия передается струями и потоками.
Теплопроводность – это способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела.
Сосуд Дьюара – это сосуд, предназначенный для длительного хранения веществ при повышенной или пониженной температуре. Постоянная температура поддерживается за счет хорошей теплоизоляции и/или процессов в хранимом веществе (например, кипение).
Термос – вид бытовой теплоизоляционной посуды, разновидность сосуда Дьюара, используемый для продолжительного сохранения более высокой или низкой температуры продуктов питания, по сравнению с температурой окружающей среды.
Основная и дополнительная литература по теме урока
- Технология. 6 класс: учеб. пособие для общеобразовательных организаций / В. М. Казакевич, Г. В. Пичугина, Г. Ю. Семенова и др.; под ред. В. М. Казакевича. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Тепловую энергию можно не только получать, но и аккумулировать и преобразовывать в другие виды энергии: электрическую, механическую и энергию химических связей. Сама тепловая энергия также может преобразовываться. Такие процессы применяются в работе холодильников и систем охлаждения. Благодаря преобразованию тепловой энергии в энергию движения – кинетическую энергию – движутся автомобили. Техническое устройство, осуществляющее это преобразование энергии, называется двигателем внутреннего сгорания. Реактивный двигатель, благодаря которому стал возможен полет ракет, также преобразует тепловую энергию в кинетическую, при работе паровой турбины на ТЭС тепловая энергия пара преобразуется в кинетическую энергию вращения турбины, а затем и в электрическую энергию.
Существует несколько способов передачи тепловой энергии. При контакте двух тел разной температуры тепловая энергия передается за счёт теплопроводности. В воздухе или воде тепловая энергия может передаваться путем конвекции. А тепловая энергия Солнца доходит до нас с помощью излучения.
Для накопления тепловой энергии применяют специальные устройства. Они должны быть изолированы от внешней среды. Это возможно, если поместить тело в пустоту или вакуум. Для того, чтобы уменьшить потерю тепловой энергии был изобретён сосуд Дьюара (современный его аналог – термос). Для уменьшения потерь тепловой энергии также применяют утеплители.
Примеры и разбор решения заданий тренировочного модуля
Задание 1. Выделите цветом правильные варианты ответов. Тепловую энергию можно преобразовать в другие виды энергии:
Варианты ответа:
энергию химических связей
Правильный вариант ответа:
энергию химических связей
Задание 2. Заполните пропуски в тексте, выбрав правильные варианты ответа из выпадающего меню.
Передача тепла от холодного тела к горячему в природе________. Однако при определённых условия можно не только производить тепло, но забирать его, ______ предметы и тела.
охлаждая /нагревая /продувая
Правильный вариант ответа:
Передача тепла от холодного тела к горячему в природе невозможна. Однако при определённых условия можно не только производить тепло, но забирать его, охлаждая предметы и тела.
Источник
Способы теплопередачи (теплообмена)
Турист остановился отдохнуть. Живительное тепло костра согревает и похлёбку в котелке, и самого туриста. Физик по этому поводу скажет: внутренняя энергия пламени переходит во внутреннюю энергию окружающих тел: воздуха, котелка, туриста. То есть между телами происходит теплообмен – переход некоторого количества теплоты от одного тела к другому.
На рисунке показаны три способа теплообмена: теплопроводность, излучение и конвекция. Путём теплопроводности через дно и стенки котелка внутренняя энергия пламени переходит во внутреннюю энергию туристской похлёбки. Путём излучения – во внутреннюю энергию ладоней туриста и других тел. А путём конвекции – во внутреннюю энергию воздуха над костром.
Теплообмен теплопроводностью. Многочисленные опыты показывают: теплопроводность различных веществ различна: при одинаковых условиях они передают теплоту с разной скоростью.
Проделаем опыт (см. рисунок). Две проволоки, например медную и стальную одинаковой длины и толщины, укрепим так, чтобы их концы попали в пламя свечи. Мы увидим, что маленькие гвоздики, приклеенные воском, с медной проволоки начнут падать раньше. Значит, теплота по медной проволоке распространяется быстрее, чем по стальной.
Тела и вещества, способные передавать теплоту с большой скоростью, называются теплопроводниками. К ним в первую очередь относятся все металлы. Большинство газов передают теплоту очень медленно. Теплопроводность жидкостей (кроме жидких металлов) занимает промежуточное положение между теплопроводностью твёрдых тел и газов. Тела и вещества, передающие теплоту с малой скоростью, называются теплоизоляторами. К ним, например, относятся пенопласт, поролон, древесина, мех, вата и др.
Теплообмен конвекцией. На рисунке вы видите тень руки с зажжённой спичкой при освещении её фонариком. Волнистые тени над пламенем создают струйки поднимающегося тёплого воздуха. Это – пример конвекции. Так называют явление возникновения струй или потоков в нагреваемых или охлаждаемых жидкостях и газах (где действует сила Архимеда). Кроме того, с точки зрения термодинамики конвекция – это способ теплообмена, при котором внутренняя энергия переносится потоками неравномерно нагретых веществ.
Теплоообмен конвекцией часто встречается вокруг нас. Например, отопительные батареи располагают вблизи пола, но из-за конвекции тепло распространяется по всей высоте комнаты. Конвективные потоки также возникают в атмосфере, способствуя возникновению ветров и облаков, а также внутри кастрюль, которые нагреваются на кухонной плите, и так далее.
Теплообмен излучением. Известно, что тела, которые нагреты сильнее, чем окружающая среда, способны излучать энергию. Обратимся к опыту (см. рисунок). Нагреем в пламени гвоздь и приблизим его к ладони, не касаясь её, – ладонь почувствует тепло. Освободим вторую руку и приложим ладони друг к другу. Мы почувствуем, что ладонь, находившаяся вблизи раскалённого гвоздя, теплее, чем вторая. То есть происходит переход теплоты от гвоздя к ладони через слой воздуха.
Однако при теплообмене излучением энергия может переноситься без участия вещества. Так, например, энергия Солнца достигает нашей планеты, преодолевая огромные расстояния через космический вакуум, в котором вещество отсутствует.
Обобщим изученное в этом параграфе. При теплообмене конвекцией энергия переносится струями или потоками неравномерно нагретого вещества. При теплообмене теплопроводностью энергия переносится через слой вещества, но само вещество при этом не движется. При теплообмене излучением энергия переносится без участия вещества.
Источник
Урок физики в 8-м классе «Виды теплопередачи»
Презентация к уроку
Цели урока:
- Познакомить учащихся с видами теплопередачи.
- Формировать умение объяснять теплопроводность тел с точки зрения строения вещества; уметь анализировать видеоинформацию; объяснять наблюдаемые явления.
Тип урока: комбинированный урок.
Демонстрации:
1. Перемещение тепла по металлическому стержню.
2. Видео демонстрация эксперимента по сравнению теплопроводности серебра, меди и железа.
3. Вращение бумажной вертушки над включенной лампой или плиткой.
4. Видео демонстрация возникновения конвекционных потоков при нагревании воды с марганцовкой.
5. Видео демонстрация по излучению тел с темной и светлой поверхностью.
I. Организационный момент
II. Сообщение темы и целей урока
На предыдущем уроке вы узнали, что внутреннюю энергию можно изменить путем совершения работы или теплопередачей. Сегодня на уроке мы рассмотрим, как происходит изменение внутренней энергии теплопередачей.
Попробуйте объяснить значение слова «теплопередача» (слово «теплопередача» подразумевает передачу тепловой энергии). Существует три способа передачи теплоты, но называть их я не буду, вы сами их назовете, когда решите ребусы.
Ответы: теплопроводность, конвекция, излучение.
Познакомимся с каждым видом теплопередачи отдельно, и пусть девизом нашего урока станут слова М.Фарадея: «Наблюдать, изучать, работать».
III. Изучение нового материала
1. Теплопроводность
Ответьте на вопросы: (слайд 3)
1. Что произойдет, если в горячий чай опустим холодную ложку? (Через некоторое время она нагреется).
2. Почему холодная ложка нагрелась? (Чай отдал часть своего тепла ложке, а часть окружающему воздуху).
Вывод: Из примера ясно, что тепло может передаваться от тела, более нагретого к телу менее нагретому (от горячей воды к холодной ложке). Но энергия передавалась и по самой ложке – от ее нагретого конца к холодному.
3. В результате чего происходит перенос тепла от нагретого конца ложки к холодному? (В результате движения и взаимодействия частиц)
Нагревание ложки в горячем чае — пример теплопроводности.
Теплопроводность – перенос энергии от более нагретых участков тела к менее нагретым, в результате теплового движения и взаимодействия частиц.
Закрепим конец медной проволоки в лапке штатива. Воском к проволоке прикреплены гвоздики. Будем нагревать свободный конец проволоки свечей или на пламени спиртовки.
Вопросы: (слайд 4)
1. Что наблюдаем? (Гвоздики начинают постепенно один за другим отпадать, сначала те, которые ближе к пламени).
2. Как происходит передача тепла? (От горячего конца проволоки к холодному).
3. Как долго будет происходить передача тепла по проволоке? (Пока проволока вся не нагреется, т. е пока температура во всей проволоке не выровняется)
4. Что можно сказать про скорость движения молекул на участке, расположенном ближе к пламени? (Скорость движения молекул увеличивается)
5. Почему нагревается следующий участок проволоки? (В результате взаимодействия молекул скорость движения молекул на следующем участке также увеличивается и температура данной части возрастает)
6. Влияет ли расстояние между молекулами на скорость передачи тепла? (Чем меньше расстояние между молекулами, тем с большей скоростью идет перенос тепла)
7. Вспомните расположение молекул в твердых телах, жидкостях и газах. В каких телах процесс переноса энергии будет происходить быстрее? (Быстрее в металлах, затем в жидкостях и газах).
Посмотрите демонстрацию эксперимента и подготовьтесь ответить на мои вопросы.
Вопросы: (слайд 5)
1. По какой пластине теплота распространяется быстрее, а по какой медленнее?
2. Сделайте вывод о теплопроводности данных металлов. (Лучшая теплопроводность у серебра и меди, несколько хуже у железа)
Обратите внимание, что при передаче тепла в данном случае переноса тела не происходит.
Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).
Запишем основные особенности теплопроводности: (слайд 7)
- в твердых телах, жидкостях и газах;
- само вещество не переносится;
- приводит к выравниванию температуры тела;
- разные тела – разная теплопроводность
Примеры теплопроводности: (слайд 8)
1. Снег — пористое, рыхлое вещество, в нем содержится воздух. Поэтому снег обладает плохой теплопроводностью и хорошо защищает землю, озимые посевы, плодовые деревья от вымерзания.
2. Кухонные прихватки сшиты из материала, который обладает плохой теплопроводностью. Ручки чайников, кастрюль делают из материалов обладающих плохой теплопроводностью. Все это защищает руки от ожогов, при прикосновении к горячим предметам.
3. Вещества с хорошей теплопроводностью (металлы) используют для быстрого нагревания тел или деталей.
2. Конвекция
1) Загляните под окошко –
Там растянута гармошка,
Но гармошке не играет –
Нам квартиру согревает. (батарея)
2) Наша толстая Федора
наедается не скоро.
А зато когда сыта,
От Федоры – теплота. (печь)
Батареи, печи, радиаторы отопления используются человеком для обогрева жилых помещений, а точнее нагревания воздуха в них. Происходит это благодаря конвекции – следующему виду теплопередачи.
Конвекция – это перенос энергии струями жидкости или газа. (Слайд 9)
Попробуем объяснить, как происходит конвекция в жилых помещениях.
Воздух, соприкасаясь с батареей, от нее нагревается, при этом он расширяется, его плотность становится меньше плотности холодного воздуха. Теплый воздух, как более легкий, поднимается вверх под действием силы Архимеда, а тяжелый холодный воздух опускается вниз.
Затем снова: более холодный воздух доходит до батареи, нагревается, расширяется, становится легче и под действием Архимедовой силы поднимается вверх и т.д.
Благодаря такому движению воздух в комнате прогревается.
Бумажная вертушка, помещенная над включенной лампой, начинает вращаться. (Слайд 10)
Попробуйте объяснить, как это происходит? (Холодный воздух при нагревании у лампы становится теплым и поднимается вверх, при этом вертушка вращается).
Точно также происходит нагревание жидкости. Посмотрите эксперимент по наблюдению конвекционных потоков при нагревании воды (с помощью марганцовки). (Слайд 11)
Обратите внимание, что в отличие от теплопроводности, при конвекции происходит перенос вещества и в твердых телах конвекция не происходит.
Различают два вида конвекции: естественную и вынужденную.
Нагревание жидкости в кастрюле или воздуха в комнате – это примеры естественной конвекции. Для ее возникновения вещества нужно нагревать снизу или охлаждать сверху. Почему именно так? Если нагревать будем сверху, то куда будут перемещаться нагретые слои воды, а куда холодные? (Ответ: никуда, так как нагретые слои и так уже наверху, а холодные слои так и останутся внизу)
Вынужденная конвекция наблюдается, если жидкость перемешивать ложкой, насосом или вентилятором.
Особенности конвекции: (слайд 12)
- возникает в жидкостях и газах, невозможна в твердых телах и вакууме;
- само вещество переносится;
- нагревать вещества нужно снизу.
Примеры конвекции: (слайд 13)
1) холодные и теплые морские и океанические течения,
2) в атмосфере, вертикальные перемещения воздуха приводят к образованию облаков;
3) охлаждение или нагревание жидкостей и газов в различных технических устройствах, например в холодильниках и др., обеспечивается водяное охлаждение двигателей
внутреннего сгорания.
3. Излучение
Всем известно, что Солнце основной источник тепла на Земле. Земля находится от него на расстоянии 150 млн. км. Как передается тепло от Солнца на Землю?
Между Землей и Солнцем за пределами нашей атмосферы все пространство – вакуум. А нам известно, что в вакууме теплопроводность и конвекция происходить не могут.
Каким способом происходит передача тепла? Здесь осуществляется еще один вид теплопередачи – излучение.
Излучение – это теплообмен, при котором энергия переносится электромагнитными лучами.
Отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум.
Посмотрите видеофрагмент об излучении (слайд 15).
Излучают энергию все тела: тело человека, печь, электрическая лампа.
Чем выше температура тела, тем сильнее его тепловое излучение.
Тела не только излучают энергию, но и поглощают ее.
(слайд 16) Причем темные поверхности лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность.
Особенности излучения (слайд 17):
- происходит в любом веществе;
- чем выше температура тела, тем интенсивнее излучение;
- происходит в вакууме;
- темные тела лучше поглощают излучение, чем светлые и лучше излучают.
Примеры использования излучения тел (слайд 18):
поверхности ракет, дирижаблей, воздушных шаров, спутников, самолётов, окрашивают серебристой краской, чтобы они не нагревались Солнцем. Если наоборот надо использовать солнечную энергию, то части приборов окрашивают в темный цвет.
Люди зимой носят темные одежды (черного, синего, коричного цвета) в них теплее, а летом светлые (бежевые, белые цвета). Грязный снег в солнечную погоду тает быстрее, чем чистый, потому что тела с темной поверхностью лучше поглощают солнечное излучение и быстрее нагреваются.
IV. Закрепление полученных знаний на примерах задач
Игра «Попробуй, объясни», (слайды 19-25).
Перед вами игровое поле с шестью заданиями, вы можете выбрать любое. После выполнения всех заданий вам откроется мудрое высказывание и тот, кто его очень часто произносит с экранов телевизоров.
1. В каком доме теплее зимой, если толщина стен одинакова? Теплее в деревянном доме, так как дерево содержит 70% воздуха, а кирпич 20%. Воздух — плохой проводник тепла. В последнее время в строительстве применяют «пористые» кирпичи для уменьшения теплопроводности.
2. Каким способом происходит передача энергии от источника тепла к мальчику? Мальчику, сидящему у печки, энергия в основном передается теплопроводностью.
3. Каким способом происходит передача энергии от источника тепла к мальчику?
Мальчику, лежащему на песке, энергия от солнца передается излучением, а от песка теплопроводностью.
4. В каком из этих вагонов перевозят скоропортящиеся продукты? Почему? Скоропортящиеся продукты перевозят в вагонах, окрашенных в белый цвет, так как такой вагон в меньшей степени нагревается солнечными лучами.
5. Почему водоплавающие птицы и другие животные не замерзают зимой?
Мех, шерсть, пух обладают плохой теплопроводностью (наличие между волокнами воздуха), что позволяет телу животного сохранять вырабатываемую организмом энергию и защищаться от охлаждения.
6. Почему оконные рамы делают двойными?
Между рамами содержится воздух, который обладает плохой теплопроводностью и защищает от потерь тепла.
«Мир интересней, чем нам кажется», Александр Пушной, программа «Галилео».
V. Итог урока
– С какими видами теплопередачи мы познакомились?
– Определите, какой из видов теплопередачи играет основную роль в следующих ситуациях:
а) нагревание воды в чайнике (конвекция);
б) человек греется у костра (излучение);
в) нагревание поверхности стола от включенной настольной лампы (излучение);
г) нагревание металлического цилиндра, опущенного в кипяток (теплопроводность).
Разгадайте кроссворд (слайд 26):
1. Величина, от которой зависит интенсивность излучения.
2. Вид теплопередачи, который может осуществляться в вакууме.
3. Процесс изменения внутренней энергии без совершения работы над телом или самим телом.
4. Основной источник энергии на Земле.
5. Смесь газов. Обладает плохой теплопроводностью.
6. Процесс превращения одного вида энергии в другой.
7. Металл, имеющий самую хорошую теплопроводностью.
8. Разреженный газ.
9. Величина, обладающая свойством сохранения.
10. Вид теплопередачи, который сопровождается переносом вещества.
Разгадав кроссворд, вы получили еще одно слово, которое является синонимом к слову «теплопередача» – это слово… («теплообмен»). «Теплопередача» и «теплообмен» – одинаковые по смыслу слова. Используйте их, заменяя одно другим.
VI. Домашнее задание
§ 4, 5, 6, Упр. 1 (3), Упр. 2(1), Упр. 3(1) – письменно.
VII. Рефлексия
В конце урока предлагаем учащимся обсудить урок: что понравилось, что хотелось бы изменить, оценить свое участие в уроке.
Прозвенит сейчас звонок,
Подошел к концу урок.
До свидания, друзья,
Отдыхать пришла пора.
Источник