- Солнечная энергия (cолнце), способы передачи тепла (теплопроводность, конвекция и излучение)
- Как получить тепловую энергию?
- Как передается тепловая энергия?
- Передача тепла за счет теплопроводности
- Передача тепла конвекцией
- Передача тепла излучением
- Технологические приложения, производящие тепло
- Солнечная энергия (Солнце) является источником большинства энергий.
- Способы солнечного отопления частного дома
- Здесь вы узнаете:
- Устройство и принцип работы
- Плюсы и минусы использования энергии солнца для отопления дома
- Эффективное использование энергии солнца
- Открытые солнечные коллекторы
- Трубчатые коллекторные разновидности
- Плоские закрытые системы
- Сравнение характеристик солнечных коллекторов
- Выбор солнечного коллектора и его монтаж
- Варианты самостоятельной сборки нагревательной системы
- Как посчитать необходимую мощность коллектора
- Стоимость системы
- Оправданы ли затраты
Солнечная энергия (cолнце), способы передачи тепла (теплопроводность, конвекция и излучение)
Механическая энергия преобразуется в тепловую энергию , Температура объектов увеличивается за счет увеличения их скорости в связи с увеличением их кинетической энергии , Вы чувствуете тепло , когда вы потрите руки зимой , так как кинетическая энергия преобразуется в тепловую энергию от трения , когда вы встряхиваете металлические шары в закрытой трубке, их температура повышается из-за трения .
Как получить тепловую энергию?
Мы можем получать тепловую энергию многими способами, такими как Солнце и преобразование механической (кинетической) энергии в тепловую за счет трения , сжигание спичечной палочки при контакте с шероховатой поверхностью из-за преобразования механической энергии в тепловую энергию за счет трения , Гвоздь нагревается, когда вы вытаскиваете его из толстой деревянной детали, потому что трение между гвоздем и деревянной частью генерирует тепловую энергию, которая вызывает нагрев ногтя.
Когда вы переворачиваете велосипед, позвольте педали вращаться быстро, затем сильно нажмите на велосипедные тормоза, коснитесь рамы колеса после его остановки, вы почувствуете, что шина и тормоза нагреваются из-за трения между ними, потому что механическая энергия преобразуется в тепловая энергия .
Когда вы кладете сферы в пластиковую банку и регистрируете их температуру с помощью термометра , температура сфер постепенно увеличивается после встряхивания. Увеличение скорости сфер и их трения друг о друга во время встряхивания приводит к увеличению их кинетической энергии и, следовательно, их температуры. поднимается.
Кинетическая энергия превращается в тепловую , поскольку движение сфер и их трение друг о друга повышают температуру , температура прямо пропорциональна скорости объектов и, следовательно, их кинетической энергии .
Как передается тепловая энергия?
Тепло передается от объекта с более высокой температурой к другим более низкой температуре, а затем она останавливается , когда они равны по температуре, тепло является одной из форм энергии , которая передается от объекта с более высокой температурой к тому , что с более низкой температурой, температурой — это тепловое состояние, которое определяет направление тепловой энергии от объекта или к объекту, когда он вступает в контакт с другим.
Способы передачи тепла
- Передача тепла за счет теплопроводности через некоторые твердые предметы.
- Перенос тепла за счет конвекции через газов и жидкостей.
- Передача тепла с помощью излучения через материальные среды и нематериальные из них (пробела).
Передача тепла за счет теплопроводности
Тепло передается за счет теплопроводности через некоторые твердые предметы (металлическую ложку) с одной стороны на другую.Сковороды состоят из меди и алюминия, потому что они хорошо проводят тепло.Когда вы кладете металлическую ложку в чашку горячего чая на Со временем вы почувствуете жар ложки, потому что тепло передается через твердые тела за счет теплопроводности.
Передача тепла за счет теплопроводности — это передача тепла через некоторые твердые предметы от части с более высокой температурой к части с более низкой температурой.Вы чувствуете жар, когда дотрагиваетесь до горячей металлической ложки, потому что тепло передается от горячего объекта (ложки) к холодному объект по проводимости
Передача тепла конвекцией
Передача тепла путем конвекции — это передача тепла в газах и жидкостях, где горячие молекулы с меньшей плотностью поднимаются вверх, а более холодные молекулы с большей плотностью падают вниз . Морозильная камера холодильника находится в верхней части холодильника, потому что, когда воздух охлаждается, его плотность увеличивается, поэтому он падает, чтобы охладить продукты в холодильнике, в то время как горячий воздух (с низкой плотностью ) поднимается вверх, чтобы снова охладиться, и так далее.
Электронагреватель размещается в нижней части комнаты, потому что, когда воздух (вокруг обогревателя) нагревается, его плотность уменьшается, поэтому он поднимается вверх, чтобы согреть комнату, в то время как холодный воздух (с высокой плотностью) падает вниз, чтобы нагреться. снова и так далее . Кондиционер закреплен в верхней части комнаты, чтобы охлаждать воздух в верхней части комнаты, где его плотность увеличивается, поэтому он падает вниз, в то время как горячий воздух поднимается вверх, чтобы охладиться и скоро.
Передача тепла излучением
Тепла от Солнца передается на Землю без какой — либо потребности в материальной среде , и таким образом , как известно , как передача тепла за счет излучения , тепло переносится излучением через материальные средства массовой информации и нематериальных из них, тепло передается от обогреватель нашего тела конвекцией и излучением .
Передача тепла посредством излучения — это передача тепла от горячего объекта к другому без какой-либо материальной среды, через которую передается тепло. Тепло передается от всех источников света посредством конвекции и излучения, в то время как тепло передается от Солнца посредством только радиация .
Тепла от Солнца передается нам излучением , потому что есть пространство (вакуум) между солнцем и Землей и передачи тепла путем излучения не нуждается в материальной среде , через которую теплу передачи.
Надев темные одежды в зимнее время, чтобы поглощать тепло от солнца , носить легкую одежду цвета летом , чтобы отражать солнечные лучи, тепла от Солнца не доходит до Земли за счет теплопроводности или конвекции, оно не передается за счет теплопроводности , так как воздух является плохим проводником тепла и не передается конвекцией, потому что между Солнцем и Землей есть пространство (вакуум) .
Технологические приложения, производящие тепло
Существует множество технологических применений, которые производят тепло , но они отличаются:
- Энергетические ресурсы, от которых они зависят.
- Вид энергоресурсов.
- Влияние на окружающую среду.
Некоторые примеры технологических приложений, которые производят тепловую энергию
Электрический нагреватель, электрический водонагреватель и электрическая плита зависят от электричества, которое является возобновляемым источником энергии и не загрязняет окружающую среду, солнечный нагреватель и солнечная печь зависят от Солнца, которое является постоянным источником энергии и не загрязняет окружающую среду .
Газовая или бензиновая плита зависит от нефтепродуктов, которые являются невозобновляемыми источниками энергии и загрязняют окружающую среду. Газовая печь зависит от природного газа (бутана), который является невозобновляемым источником энергии и загрязняет окружающую среду.
Угль огнь зависит от угля , который является невозобновляемыми ресурсами энергии и загрязняющим к окружающей среде, В солнечных элементах и солнечные батареях, Солнечная энергия превращается в электрическую энергию , в солнечном нагревателе, солнечные печи и солнечная печь, солнечная энергия переходит в тепловая энергия .
Солнечная энергия (Солнце) является источником большинства энергий.
Солнечная энергия считается самым чистым и дешевым источником энергии, потому что она не загрязняет окружающую среду, она превращается в другие виды энергии, такие как химическая энергия, хранящаяся в нефтяном масле и угле, химическая энергия сохраняется в растениях в процессе фотосинтеза , тепловая энергия как в солнечной печи (духовке) и солнечном нагревателе, Электроэнергия, как в солнечных элементах или солнечных батареях, превращается в:
- Световая и тепловая энергия,как в электрической лампе .
- Кинетическая энергия как у электровентилятора.
- Тепловая энергия как в электронагревателе.
Производство электричества из солнечной энергии предпочтительнее, чем за счет сжигания топлива, поскольку солнечная энергия является постоянным источником энергии, Солнце — чистым источником энергии , который не загрязняет окружающую среду,
В качестве источников тепловой энергии предпочтительнее использовать Солнце и электричество, чем уголь и бензин, потому что Солнце и электричество не загрязняют окружающую среду, в то время как уголь и бензин загрязняют окружающую среду.
Источник
Способы солнечного отопления частного дома
Здесь вы узнаете:
Солнечное отопление частного дома — современный и экологичный способ. Преимуществ у такого метода множество, и главные — экономичность и отсутствие вредных отходов. Однако и стоит такая установка немало, и в некоторых регионах применять ее нецелесообразно ввиду небольшого количества солнечных дней.
Устройство и принцип работы
Солнечное отопление частного дома — инновационная технология, о которой пока еще не все имеют четкое представление. Между тем, все возможности для установки и использования соответствующих комплексов имеются практически у любого домовладельца. Необходимость финансовых вложений существует только для приобретения аппаратуры или оборудования, все остальное он получит бесплатно.
Существует два варианта организации солнечного отопления:
- Солнечные батареи;
- Солнечные коллекторы.
Использование солнечных батарей — более затратный метод, требующий присутствия большого количества оборудования. Используются фотоэлектрические элементы, расположенные на открытой площадке под нужным углом для максимально перпендикулярного падения солнечных лучей. Они вырабатывают электрический ток, который накапливается в аккумуляторных батареях, преобразуется в переменный ток со стандартными параметрами, после чего направляется на отопительные приборы.
Отопление от солнечных батарей в частном доме дает массу дополнительных возможностей. Такой способ имеет значительное преимущество —электрический ток, который вырабатывают солнечные батареи, можно использовать не только на обогрев дома, но и на питание любых приборов, на освещение или иные надобности.
Солнечные батареи для дома для отопления, стоимость которых довольно высока, могут оказаться невыгодны с финансовой точки зрения.
Солнечные коллекторы действуют по другому принципу. Они не вырабатывают, а получают от Солнца тепловую энергию, которая нагревает теплоноситель в емкостях или трубках. В принципе, коллектором можно считать любую емкость с водой, выставленную на солнце, но имеются специальные конструкции, способные продемонстрировать наибольшую эффективность. Такой вариант системы значительно проще, дешевле и доступен для самостоятельного изготовления.
Полученное тепло сразу реализуется в повышении температуры теплоносителя, который аккумулируется в накопительной емкости, откуда распределяется по отопительным контурам дома. Оптимальным способом обогрева является использование низкотемпературных систем, таких как теплый пол. Они не нуждаются в сильном нагреве, что соответствует возможностям солнечных коллекторов. В ночное время расходуется теплоноситель, нагретый за день.
Для максимальной солнечных коллекторов эффективности необходимо качественно утеплять накопительную емкость.
Плюсы и минусы использования энергии солнца для отопления дома
Самым очевидным плюсом использования энергии солнца является ее общедоступность. На самом деле даже в самую хмурую и облачную погоду солнечная энергия может быть собрана и использована.
Второй плюс — это нулевые выбросы. По сути, это самый экологически чистый и естественный вид энергии. Солнечные батареи и коллекторы не производят шума. В большинстве случаев устанавливаются на крышах зданий, не занимая полезную площадь загородного участка.
Недостатки, связанные с использованием энергии солнца, заключаются в непостоянстве освещенности. В темное время суток становится нечего собирать, ситуация усугубляется тем, что пик отопительного сезона приходится на самые короткие световые дни в году.
Существенный недостаток отопления, основанного на применении солнечных коллекторов, заключается в отсутствии возможности накапливать тепловую энергию. В схему включен только расширительный бак
Необходимо следить за оптической чистотой панелей, незначительное загрязнение резко снижает КПД.
Кроме того, нельзя сказать, что эксплуатация системы на солнечной энергии обходится полностью бесплатно, существуют постоянные затраты на амортизацию оборудования, работу циркуляционного насоса и управляющей электроники.
Эффективное использование энергии солнца
Самым очевидным плюсом использования энергии солнца является ее общедоступность. На самом деле даже в самую хмурую и облачную погоду солнечная энергия может быть собрана и использована.
Второй плюс – это нулевые выбросы. По сути, это самый экологически чистый и естественный вид энергии. Солнечные батареи и коллекторы не производят шума. В большинстве случаев устанавливаются на крышах зданий, не занимая полезную площадь загородного участка.
Эффективность солнечного отопления в наших широтах довольно низка, что объясняется недостаточным количеством солнечных дней для регулярной работы системы (+)
Недостатки, связанные с использованием энергии солнца, заключаются в непостоянстве освещенности. В темное время суток становится нечего собирать, ситуация усугубляется тем, что пик отопительного сезона приходится на самые короткие световые дни в году. Необходимо следить за оптической чистотой панелей, незначительное загрязнение резко снижает КПД.
Кроме того, нельзя сказать, что эксплуатация системы на солнечной энергии обходится полностью бесплатно, существуют постоянные затраты на амортизацию оборудования, работу циркуляционного насоса и управляющей электроники.
Открытые солнечные коллекторы
Открытый солнечный коллектор представляет собой незащищенную от внешних воздействий систему трубок, по которым циркулирует нагреваемый непосредственно солнцем теплоноситель.
В качестве теплоносителя применяется вода, газ, воздух, антифриз. Трубки либо закрепляются на несущей панели в виде змеевика, либо присоединяются параллельными рядами к выходному патрубку.
Солнечные коллекторы открытого типа не способны справиться с отоплением частного дома. Из-за отсутствия изоляции теплоноситель быстро остывает. Их используют в летнее время в основном для нагрева воды в душевых или бассейнах
У открытых коллекторов нет обычно никакой изоляции. Конструкция очень простая, поэтому имеет невысокую стоимость и часто изготавливается самостоятельно.
Ввиду отсутствия изоляции практически не сохраняют полученную от солнца энергию, отличаются низким КПД. Применяют их преимущественно в летний период для подогрева воды в бассейнах или летних душевых.
Устанавливаются в солнечных и теплых регионах, при небольших перепадах температуры окружающего воздуха и подогреваемой воды. Хорошо работают только в солнечную, безветренную погоду.
Самый простой солнечный коллектор с теплоприемником, сделанным из бухты полимерных труб, обеспечит поставку подогретой воды на даче для полива и бытовых нужд
Трубчатые коллекторные разновидности
Трубчатые солнечные коллекторы собираются из отдельных трубок, по которым курсирует вода, газ или пар. Это одна из разновидностей гелиосистем открытого типа. Однако теплоноситель уже намного лучше защищен от внешнего негатива. Особенно в вакуумных установках, устроенных по принципу термосов.
Каждая трубка подключается к системе отдельно, параллельно друг другу. При выходе из строя одной трубки ее легко поменять на новую. Вся конструкция может собираться непосредственно на кровле здания, что значительно облегчает монтаж.
Трубчатый коллектор имеет модульную структуру. Основным элементом является вакуумная трубка, количество трубок варьируется от 18 до 30, что позволяет точно подобрать мощность системы
Веский плюс трубчатых солнечных коллекторов заключается в цилиндрической форме основных элементов, благодаря которым солнечное излучение улавливается круглый световой день без применения дорогостоящих систем слежения за передвижением светила.
Специальное многослойное покрытие создает своего рода оптическую ловушку для солнечных лучей. На схеме частично показана внешняя стенка вакуумной колбы отражающая лучи на стенки внутренней колбы (+)
По конструкции трубок различают перьевые и коаксиальные солнечные коллекторы.
Коаксиальная трубка представляет собой сосуд Дьаюра или всем знакомый термос. Изготовлены из двух колб между которыми откачан воздух. На внутреннюю поверхность внутренней колбы нанесено высокоселективное покрытие эффективно поглощающее солнечную энергию.
При цилиндрической форме трубки солнечные лучи всегда падают перпендикулярно поверхности
Тепловая энергия от внутреннего селективного слоя передается тепловой трубке или внутреннему теплообменнику из алюминиевых пластин. На этом этапе происходят нежелательные теплопотери.
Перьевая трубка представляет собой стеклянный цилиндр со вставленным внутрь перьевым абсорбером.
Свое название система получила от перьевого абсорбера, который плотно обхватывает тепловой канал из теплопроводящего металла
Для хорошей теплоизоляции из трубки откачан воздух. Передача тепла от абсорбера происходит без потерь, поэтому КПД перьевых трубок выше.
По способу передачи тепла есть две системы: прямоточные и с термотрубкой (heat pipe). Термотрубка представляет собой запаянную емкость с легкоиспаряющейся жидкостью.
Поскольку легкоиспаряющаяся жидкость естественным образом стекает на дно термотрубки, минимальный угол наклона составляет 20° С
Внутри термотрубки находится легкоиспаряющаяся жидкость, которая воспринимает тепло от внутренней стенки колбы или от перьевого абсорбера. Под действием температуры жидкость закипает и в виде пара поднимается вверх. После того как тепло отдано теплоносителю отопления или горячего водоснабжения, пар конденсируется в жидкость и стекает вниз.
В качестве легкоиспаряющейся жидкости часто применяется вода при низком давлении. В прямоточной системе используется U-образная трубка, по которой циркулирует вода или теплоноситель системы отопления.
Одна половина U-образной трубки предназначена для холодного теплоносителя, вторая отводит нагретый. При нагреве теплоноситель расширяется и поступает в накопительный бак, обеспечивая естественную циркуляцию. Как и в случае систем с термотрубкой, минимальный угол наклона должен составлять не менее 20⁰.
При прямоточном подключении давление в системе не может быть высоким, так как внутри колбы технический вакуум
Прямоточные системы более эффективны так как сразу нагревают теплоноситель. Если системы солнечных коллекторов запланированы к использованию круглый год, то в них закачивается специальные антифризы.
Применение трубчатых солнечных коллекторов имеет ряд достоинств и недостатков. Конструкция трубчатого солнечного коллектора состоит из одинаковых элементов, которые относительно легко заменить.
Достоинства:
- низкие теплопотери;
- способность работать при температуре до -30⁰С;
- эффективная производительность в течение всего светового дня;
- хорошая работоспособность в областях с умеренным и холодным климатом;
- низкая парусность, обоснованная способностью трубчатых систем пропускать сквозь себя воздушные массы;
- возможность производства высокой температуры теплоносителя.
Конструктивно трубчатая конструкция имеет ограниченную апертурную поверхность.
Обладает следующими недостатками:
- не способна к самоочистке от снега, льда, инея;
- высокая стоимость.
Несмотря на первоначально высокую стоимость, трубчатые коллекторы быстрее окупаются. Имеют большой срок эксплуатации.
Трубчатые коллекторы относятся к гелиоустановкам открытого типа, потому не подходят для круглогодичного использования в системах отопления (+)
Плоские закрытые системы
Плоский коллектор состоит из алюминиевого каркаса, специального поглощающего слоя – абсорбера, прозрачного покрытия, трубопровода и утеплителя.
В качестве абсорбера применяют зачерненную листовую медь, отличающуюся идеальной для создания гелиосистем теплопроводностью. При поглощении солнечной энергии абсорбером происходит передача полученной им солнечной энергии теплоносителю, циркулирующему по примыкающей к абсорберу системе трубок.
С наружной стороны закрытая панель защищена прозрачным покрытием. Оно изготовлено из противоударного закаленного стекла, имеющего полосу пропускания 0,4-1,8мкм. На такой диапазон приходится максимум солнечного излучения. Противоударное стекло служит хорошей защитой от града. С тыльной стороны вся панель надежно утеплена.
Плоские солнечные коллекторы отличаются максимальной производительностью и простой конструкцией. КПД их увеличен за счет применения абсорбера. Они способны улавливать рассеянное и прямое солнечное излучение
В перечне преимуществ закрытых плоских панелей числятся:
- простота конструкции;
- хорошая производительность в регионах с теплым климатом;
- возможность установки под любым углом при наличии приспособлений для изменения угла наклона;
- способность самоочищаться от снега и инея;
- низкая цена.
Плоские солнечные коллекторы особенно выгодны, если их применение запланировано еще на стадии проектирования. Срок службы у качественных изделий составляет 50 лет.
К недостаткам можно отнести:
- высокие теплопотери;
- большой вес;
- высокая парусность при расположении панелей под углом к горизонту;
- ограничения в производительности при перепадах температуры более 40°С.
Сфера применения закрытых коллекторов значительно шире, чем гелиоустановок открытого типа. Летом они способны полностью удовлетворить потребность в горячей воде. В прохладные дни, не включенные коммунальщиками в отопительный период, они могут поработать вместо газовых и электрообогревателей.
Желающим сделать солнечный коллектор собственными руками для устройства отопления на даче предлагаем ознакомиться с проверенными на практике схемами и пошаговыми инструкциями по сборке.
Сравнение характеристик солнечных коллекторов
Самым главным показателем солнечного коллектора является КПД. Полезная производительность разных по конструкции солнечных коллекторов зависит от разности температур. При этом плоские коллекторы значительно дешевле трубчатых.
Значения КПД зависят от качества изготовления солнечного коллектора. Цель графика показать эффективность применения разных систем в зависимости от разницы температуры
При выборе солнечного коллектора стоит обратить внимание на ряд параметров показывающих эффективность и мощность прибора.
Для солнечных коллекторов есть несколько важных характеристики:
- коэффициент адсорбции – показывает отношение поглощенной энергии к общей;
- коэффициент эмиссии – показывает отношение переданной энергии к поглощенной;
- общая и апертурная площадь;
- КПД.
Апертурная площадь – это рабочая площадь солнечного коллектора. У плоского коллектора апертурная площадь максимальна. Апертурную площадь равна площади абсорбера.
Выбор солнечного коллектора и его монтаж
Перед домовладельцем, решившим создать солнечное отопление частного дома своими руками, встает задача выбрать наиболее подходящий тип коллектора. Этот вопрос достаточно сложен, но разобраться в нем необходимо.
Открытые коллекторы не подойдут из-за низких возможностей, поэтому о них нет смысла говорить. Обычно выбор производится между трубчатыми и плоскими видами. Первым и самым значимым критерием выбора обычно становится соотношение цены и качества изделий.
Такой подход оправдан, но нельзя не учитывать ремонтопригодность. Так, вакуумные трубки можно менять далеко не во всех видах коллекторов, что делает выбор рискованным. При выходе из строя одной из них у некоторых видов коллекторов придется менять всю панель, что потребует расходов. Вообще, все вакуумные устройства — довольно рискованное приобретение, так как любое механическое воздействие грозит потерей источника тепловой энергии.
Выбрав оптимальный вариант, приступают к монтажу. Для него надо выбрать подходящую площадку, расположенную неподалеку от дома. Это важно, поскольку транспортировка теплоносителя на большие расстояния потребует качественного утепления и установки циркуляционного насоса. Обычно коллекторы устанавливают на крышу, чтобы получить возможность циркуляции самотеком.
Единственной проблемой становится расположение скатов относительно положения солнца на небе — иногда приходится устанавливать трекинг-систему для поворота панелей. Это дорого и требует использования гибких трубок, но эффект в результате получается значительно выше.
Варианты самостоятельной сборки нагревательной системы
На сегодняшний день существует несколько способом сборки солнечного обогревателя своими руками. Рассмотрим наиболее популярные способы сборки.
Первый вариант. Здесь нужна оцинкованная тара для воды. Она должна иметь объем примерно 100-200 литров. Технология создания солнечной батареи имеет следующий алгоритм:
- располагаем тару на крыше. Ее следует монтировать с южной стороны крыши;
- поверхность крыши нужно покрыть металлическим листом с блестящей поверхностью;
- поверх него кладем трубы;
- подключаем их к бочке и емкости для нагретой воды.
Вариант солнечного самодельного коллектора
С помощью такой батареи 100 литров воды можно нагреть на 60 градусов. Такая установка имеет высокий КПД. Но в зимнее время такой агрегат будет не эффективным.
Второй вариант сборки. Для создания такого типа коллектора вам понадобятся:
- стальные коробки;
- несколько плоских стальных радиаторов;
- стекло;
- металлопластиковые элементы — фитинги и трубы.
Сборки системы в данном случае происходят следующим образом:
- стальные коробки монтируются на крыше;
- туда укладываются радиаторы;
- сверху накрываем их стеклом. Это позволит уменьшить время нагрева воды;
- трубки нужно укладывать с уклоном вниз;
- обязательно следите, чтобы верх устройства располагался ниже накопительного бака;
- на чердаке устанавливается пластиковая бочка с водой. Подходящий объем — 160 л;
- ее нужно соединять с радиатором и водопроводом при помощи металлопластиковых устройств — фитингов и трубок. Саму трубку с водой нужно подключить несколько выше его середины бака;
- внизу радиатора ставятся дренажные краны. С их помощью происходит слив воды в холодное время суток.
Вариант с пластиковой бочкой
Третий вариант. Применяется для обогрева достаточно большого помещения. Имеет эффективность на уровне 45-55%. Для создания системы обогрева такого типа вам понадобятся следующие материалы:
- любой теплоизоляционный материал;
- деревянная рамка, имеющая фанерное днище;
- сетка из металла черного цвета;
- дефлектор;
- прозрачный лист поликарбоната;
- несколько вентиляторов
Сборка конструкции осуществляется следующим образом:
- сверлим в рампе круглые отверстия. Они прорезаются для забора воздуха;
- для отвода горячего воздуха делаем прямоугольные отверстия вверху рамы;
- на ее дно кладем теплоизоляционный материал. В качестве аккумулятора тепла будет выступать металлическая черная сетка;
- вентиляторы, встраиваемые в круглые отверстия;
- затем монтируем опорные планки для дефлектора. После этого устанавливаем сам дефлектор. Он будет формировать воздушный поток;
- сверху устанавливаем прозрачный лист.
С помощью такого агрегата можно эффективно осуществлять обогрев дома, а также нагрев воды.
Как посчитать необходимую мощность коллектора
При расчете необходимой мощности солнечного коллектора очень часто ошибочно производят вычисления, исходя из поступающей солнечной энергии в самые холодные месяцы года.
Дело в том, что в остальные месяцы года вся система будет постоянно перегреваться. Температура теплоносителя летом на выходе из солнечного коллектора может достигать 200°С при нагреве пара или газа, 120°С антифриза, 150°С воды. Если теплоноситель закипит, он частично испариться. В результате его придется заменить.
Компании производители рекомендуют исходить из таких цифр:
- обеспечение горячего водоснабжения не более 70%;
- обеспечение отопительной системы не более 30%.
Остальное необходимое тепло должно вырабатывать стандартное отопительное оборудование. Тем не менее при таких показателях в год экономится в среднем около 40% на отоплении и горячем водоснабжении.
Мощность вырабатываемая одной трубкой вакуумной системы зависит от географического местоположения. Показатель солнечной энергии падающей в год на 1 м2 земли называется инсоляцией. Зная длину и диаметр трубки, можно высчитать апертуру – эффективную площадь поглощения. Остается применить коэффициенты абсорбции и эмиссии для вычисления мощности одной трубки в год.
Пример расчета:
Стандартная длина трубки составляет 1800 мм, эффективная — 1600 мм. Диаметр 58 мм. Апертура – затененный участок создаваемый трубкой. Таким образом площадь прямоугольника тени составит:
S = 1,6 * 0,058 = 0,0928м2
КПД средней трубки составляет 80%, солнечная инсоляция для Москвы составляет около 1170 кВт*ч/м2 в год. Таким образом одна трубка выработает в год:
W = 0,0928 * 1170 * 0,8 = 86,86кВт*ч
Необходимо отметить, что это очень приблизительный расчет. Количество вырабатываемой энергии зависит от ориентирования установки, угла, среднегодовой температуры и т.д. опубликовано econet.ru
Стоимость системы
Фиксированной стоимости индивидуального отопления с использованием солнечных коллекторов не существует, так как в ней всегда присутствует котел, и каким он будет – напольным или настенным, конденсационным или традиционным, газовым, дизельным или электрическим – решается под каждый конкретный дом. Также, как и в любой другой отопительной системе, цена будет складываться из таких показателей, как площадь дома, расчет теплопотерь, наличие и площадь теплых полов.
В случае с организацией горячего водоснабжения посредством подключения солнечных коллекторов, существуют разработанные пакетные предложения, так как необходимый объем воды можно классифицировать по количеству проживающих в доме людей и общему числу потребителей. Например, стоимость системы горячего водоснабжения с использованием плоского солнечного коллектора немецкой компании Huch EnTEC составит около 165000 рублей. В эту сумму входят также все необходимые крепепжи, термостатический смеситель, группа подключения расширительного бака, бивалентный водонагреватель, группа безопасности водонагревателя, незамерзающий теплоноситель для гелиосистемы.
Полезный совет! Доверяйте расчет солнечного отопления и водоснабжения профессионалам с многолетним опытом и десятками подобных реализованных проектов за плечами! Только так вы сможете застраховать себя от ненужных переплат.
Оправданы ли затраты
Стоимость оборудования, входящего в комплект гелиоустановок, достаточно высока, поэтому всегда, прежде принять решение о приобретении таких изделий, нужно просчитать стоимость требуемого комплекта и финансовую отдачу, которую можно получить от использования подобных установок.
В состав комплекта оборудования, которое обеспечит автономное отопление дома, кроме коллектора, входит еще ряд технических устройств, что также отражается на сумме затрат на весь комплект оборудования.
Так для создания системы отопления н основе солнечного коллектора потребуется:
- Коллектор.
- Бак аккумулятор тепла.
- Расширительный бак.
- Циркуляционный насос.
- Трубы и запорная арматура.
Из всего перечисленного оборудования, самая дорогая единица, это сам коллектор, поэтому, для того, чтобы определиться, оправданы ли затраты на монтаж такой системы, нужно решить, что является прерогативой в этом вопросе, потому как стоимость котлов, работающих на газе или твердом топливе, сопоставима со стоимостью солнечного коллектора.
В связи с этим, на принятие решения о целесообразности монтажа именно такого типа отопления, и соответственно затрат на оборудование, являются критерии выбора подобных систем, а также плюсы и минусы их эксплуатации, о которых было написано выше.
Источник