Производство и передача переменного электрического тока
Переменным током называется ток, величина и направление которого периодически меняются. Именно благодаря переменному току в наших домах сегодня есть свет и тепло. Только благодаря переменному току работают все промышленные предприятия и производства нашего времени. Не будь переменного тока, технологический прогресс современной цивилизации был бы попросту невозможен.
Для получения переменного тока используются электромеханические устройства, называемые индукционными генераторами. В них получаемая тем или иным способом механическая энергия передается ротору, ротор вращается, в результате механическая энергия вращения ротора преобразуется в электрическую энергию посредством электромагнитной индукции.
Напомним, что если вращать магнит внутри проводящей рамки, то в рамке будет индуцироваться переменный ток. На этом принципе и работает генератор. Только в промышленном генераторе роль рамки играет статор, а роль магнита — ротор с намагничивающей обмоткой, по сути — вращающийся электромагнит.
В промышленном генераторе статор представляет собой огромную стальную конструкцию в виде кольца с пазами на его внутренней стороне. В эти пазы уложена медная трехфазная обмотка. Магнитное поле, как мы уже сказали, создается ротором, который представляет собой стальной сердечник с парой (или с несколькими парами, в зависимости от номинальной скорости вращения ротора) полюсов, формируемых током обмотки ротора. Постоянный ток подается к обмотке ротора от возбудителя.
По принципиальной схеме двухполюсного индукционного генератора переменного тока легко понять, что силовые линии магнитного поля ротора пересекают витки обмотки статора, при этом один раз за один оборот магнитный поток ротора изменяет свое направление по отношению к одним и тем же виткам статора.
Таким образом в обмотке статора получается именно переменный ток, а не пульсирующий постоянный. Если речь идет об атомной электростанции, то механическое вращение ротор генератора получает от пара, который под огромным давлением подается на лопасти турбины сопряженной с ротором. Пар на атомной электростанции получается из воды, которая разогревается теплом от ядерной реакции, подводимым к воде через теплообменник.
В России частота переменного тока в сети равна 50 Гц, это значит, что ротору двухполюсного генератора необходимо совершить 50 оборотов за секунду. Так, на атомной электростанции ротор совершает 3000 оборотов в минуту, что как раз и дает частоту генерируемого тока в 50 Гц. Направление генерируемого тока изменяется по синусоидальному (гармоническому) закону.
Обмотка генератора разделена на три части, поэтому переменный ток получается трехфазным. Это значит, что в каждой из трех частей обмотки статора получаемые ЭДС смещены по фазе относительно друг друга на 120 градусов. Действующее значение генерируемого на электростанции напряжения может быть от 6,3 до 36,75 кВ, в зависимости от вида генератора.
Чтобы передать электрическую энергию на большое расстояние, используются высоковольтные линии электропередач (ЛЭП). Но если электричество передавать без преобразования, при том же напряжении какое выходит с генератора, то потери энергии при передаче окажутся колоссальными, и до конечного потребителя практически ничего не дойдет.
Дело в том, что потери энергии в передающих проводах пропорциональны квадрату величины тока и прямо пропорциональны сопротивлению проводов (см. Закон Джоуля-Ленца). Значит для более эффективной передачи и распределения электроэнергии, напряжение необходимо сначала в несколько раз повысить, чтобы во столько же раз уменьшился ток и следовательно сильно сократились транспортные потери. И только повышенное напряжение имеет смысл передавать на ЛЭП.
Поэтому электричество от электростанции сначала подается на трансформаторную подстанцию. Здесь напряжение повышается до 110-750 кВ и только после — подается на провода ЛЭП. Но потребителю необходимо 220 или 380 вольт, поэтому в конце линии высокое напряжение обратно понижают, при помощи опять же трансформаторных подстанций, до 6-35 кВ.
На подстанции вблизи нашего дома или встроенной в дом, установлен трансформатор. Здесь напряжение снова понижается — от 6-35кВ до 220 (380) вольт, которые уже раздаются потребителям. Через вводно-распределительное устройство в разные помещения расходится сеть проводов и кабелей.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Получение и передача переменного тока. Трансформатор
Переменный ток – это электрический ток, меняющийся во времени периодически по модулю и направлению.
На практике это в подавляющем большинстве случаев означает, что зависимость тока от времени будет представлять из себя синусоиду. Например, напряжение в розетке вполне синусоидальное с частотой 50 Гц и амплитудой 311 В, как бы неожиданно это не звучало.
Для получения такого напряжения сейчас используют электромеханические индукционные генераторы.
Принцип действия генератора переменного тока основан на вращении магнита внутри контура. При этом вращающаяся часть называется ротором, а неподвижная – статором.
Ниже показана схема реального электрогенератора – на неё видны магнит (ротор), общий сердечник катушек, сами катушки (статор). Такой генератор называется трёхфазным и он представляет из себя сразу три источника напряжения – так уж вышло, что на практике проще сделать генератор, являющийся сразу тремя источниками, чем генератор, который был бы одним источником аналогичной мощности.
Когда ротор вращается, магнитный поток в катушках меняется – чтобы это увидеть, достаточно взглянуть на линии магнитного поля.
Когда полюс направлен на обмотку, в ней поток околонулевой, когда обмотка сбоку от полюса, в ней поток максимальный.
Обычно на электростанциях генератор вращает турбина – паровая или водяная. В автомобиле генератор вращает поршневой двигатель.
Изобретение переменного тока в своё время было большим достижением. Дело в том, что переменный ток легко передавать на большие расстояния. Большое расстояние предполагает, что мы передаём ток по длинному проводу, а значит, сопротивление велико. Тепловые потери равны Q = I 2 * R * t, а передаваемая энергия равна E = U * I * t, то есть если мы хотим передавать такую же энергию, как и раньше, но с меньшими потерями, нам надо или уменьшать сопротивление проводов (что очень дорого), или увеличивать передаваемое напряжение при уменьшении тока.
Если увеличить напряжение, это приведёт к тому, что на розетке будет написано на 220 В, а 10000 В, например, и изоляция будет толщиной с садовый шланг, и любое короткое замыкание будет выглядеть вот так:
Все эти проблемы легко решаются переменным током, потому что его можно передавать на дальние расстояния с огромным напряжением, а затем понижать напряжение и передавать в дома уже безопасным способом.
Ключевые слова здесь – можно понижать напряжение.
Для этой задачи у нас есть трансформаторы. Трансформатор устроен следующим образом:
Протекающий в первичной обмотке ток создаёт магнитное поле в сердечнике (переменное магнитное поле, так как ток переменный), это магнитное поле создаёт переменный ток во вторичной обмотке, потому что изменение магнитного потока порождает ток самоиндукции.
Фишка трансформатора в том, что индуктивность обмоток разная – и значит, напряжение на них тоже будет разным.
Напряжения на обмотках соотносятся по формуле:
U1 / U2 = N1 / N2, где N – число витков в соответствующей обмотке.
Передача переменного тока от электростанции до дома происходит по следующей схеме: вначале генератор производит напряжение порядка 25 кВ, затем это напряжение повышается трансформатором до примерно 750 кВ, передаётся на ЛЭП, а затем на подстанции оно понижается до 220 В (ну, амплитуда 311 В, но среднее значение всё же 220 В, а лампочка светится пропорционально среднему значению, а не максимальному), и дальше мы им пользуемся.
Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание
Добавить интересную новость
Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников
user->isGuest) < echo (Html::a('Войдите', ['/user/security/login'], ['class' =>»]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else < if(!empty(\Yii::$app->user->identity->profile->first_name) || !empty(\Yii::$app->user->identity->profile->surname))< $name = \Yii::$app->user->identity->profile->first_name . ‘ ‘ . \Yii::$app->user->identity->profile->surname; > else < $name = ''; >echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>
При правильном ответе Вы получите 1 балл
У Вовы вышел из строя блок питания для телефона. Вова вскрыл его и увидел, что у трансформатора перегорела первая обмотка. Вова прочитал документацию на телефон и понял, что тот потребляет напряжение 5.5 В.
Сколько витков надо сделать на первой обмотке, если на второй их 50, а напряжение в сети 220 В?
Выберите всего один правильный ответ.
Добавление комментариев доступно только зарегистрированным пользователям
Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.
28.01.17 / 22:14, Иван Иванович Ответить +5
Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.
28.01.17 / 22:14, Иван ИвановичОтветить -2
Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.
28.01.17 / 22:14, Иван Иванович Ответить +5
Источник
Методы передачи электроэнергии на расстояние
Электроэнергией является свойство магнитного поля преобразоваться в иные виды энергии. Такими видами энергии могут быть: механическая, химическая, паровая, лазерная. Число потребителей и источников потребления постоянно растет. Поэтому вопрос о способах передачи электроэнергии на большие расстояния, с сохранением мощности и ее распределением, остается открытым. Статья опишет основные и актуальные способы передачи, а также современные разработки в области беспроводных технологий.
Способы передачи электроэнергии
Электроэнергия или переменный ток, передается от источника к потребителю, через провода или подземные кабельные линии. Эти способы актуальны на протяжении многих лет. Связано это с тем, что нет технологии, способной передать электричество на большое расстояние при минимальных потерях с сохранением полной мощности. Да и способ еще должен быть максимально надежным и дешевым.
Схема передачи переменного электрического напряжения или постоянного электрического напряжения выглядит следующим образом:
Принцип работы и объяснение схемы:
- В начале схемы находится генератор, вырабатывающий электричество.
- От генератора напряжение подается на трехфазный трансформатор, для повышения мощности. От него электричество течет по ЛЭП (линия электропередачи).
- После ЛЭП напряжение попадает на трехфазный понижающий трансформатор.
- От трансформатора напряжение подается потребителю, с существенным занижением.
Для постоянного тока существует выпрямительное устройство, которое находится после повышающего трансформатора. Пройдя по ЛЭП, постоянный ток сначала должен попасть на устройство преобразования постоянного тока в переменный, а только потом на понижающий трансформатор.
Воздушные и кабельные линии
Потребление электроэнергии по воздушным ЛЭП и кабельным линиям, представляет собой определенную схему. В начале схемы находится источник энергии, а именно электростанция. Электростанция подает завышенное напряжение на распределительную линию, в конце которой находится занижающий трансформатор. Основным минусом подобной схемы является именно потребность в подаче слишком высокой мощности. Связано это с потерей доли напряжения на расстоянии. Способов подобной передачи 2.
Воздушные линии представляют собой сеть высоковольтных проводов, подвешенных на столбы или опоры. Этот метод очень распространен и является эффективным. Но и у него есть ряд минусов:
- большие затраты в рабочей силе и материале на стадии поставки новым потребителям на большое расстояние;
- потеря значительной доли мощности с каждым километром;
- требование подачи большой мощности в начале (от электростанции);
- вред магнитного поля для человека;
- большая вероятность повреждения и разрушения от природных катаклизмов;
- большие трудности для монтажа ЛЭП в трудных, непроходимых регионах.
Воздушные линии подают потребителю переменный ток. По дальности и мощности они делятся на следующие категории:
- Воздушные линии напряжением до 1 кВ считаются низковольтными. Они являются окончанием схемы передачи к потребителю.
- Линии с напряжением от 1 до 35 кВ считаются средними.
- Высоковольтными линиями считаются ВЭЛ с напряжением 110-220 кВ. Эти линии являются началом схемы передачи напряжения.
- К сверхвысоковольтным относятся ВЭЛ напряжением 330–750 кВ.
- К ультра высоковольтным относятся ВЭЛ напряжением, превышающим 750 кВ.
Чем выше подаваемое напряжение, тем большие расстояния оно должно покрыть от источника к потребителю.
Кабельные линии работают по схожему принципу. По ним также поступает переменный электрический ток. Но проводят такие линии под землей или под водой. Основными недостатками подобной передачи являются:
- Большие трудности и затраты при прокладке. Кабельные линии прокладываются в местах, где невозможно или опасно проводить воздушные линии.
- Также идет потеря доли напряжения с расстоянием.
- Существует опасность механического повреждения или растяжения кабеля.
- Есть опасность шагового напряжения при повреждении, особенно в воде.
- Очень тяжело найти и устранить повреждение.
На данный момент существует 2 схемы передачи электроэнергии от источника к потребителю по воздушным или кабельным линиям:
- Разомкнутая схема. Эта схема передачи представляет собой источник напряжения и потребителя как прямую линию. Минусом такой схемы является отсутствие резервной линии при повреждении какого-либо участка.
- Замкнутая схема (более надежна). В ней источник и все потребители заключены в кольцо или сложную схему. При повреждении участка линии, подача электричества не прекращается.
Подобные схемы также делятся на категории.
Схемы в визуальном отображении:
Разомкнутая схема бывает 3 видов:
- Схема радиального подключения, в которой на одном конце находится подающее устройство, а на втором конце потребитель энергии.
- Магистральная схема похожа на радиальную, но в ней присутствуют дополнительные отводы для потребления.
- Схема магистральной подачи, при которой между двумя источниками находится один потребитель.
Замкнутая схема также бывает 3 видов:
- Кольцевая схема с одним источником и потребителем.
- Магистральная схема с наличием резервного источника.
- Сложная замкнутая схема, для подключения потребителей особого назначения.
Все эти схемы относятся к передаче постоянного тока потребителю. Передача и распределение электроэнергии подобным способом является одинаковым для российских и зарубежных сетей.
Постоянный ток
Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:
- С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
- Статическая устойчивость не оказывает влияния на передачу и распределение.
- Не требуется настраивать частотную синхронизацию.
- Напряжение можно передать всего по одной линии с одним контактным проводом.
- Нет влияния электромагнитного излучения.
- Минимальная реактивная мощность.
Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.
Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.
Беспроводная передача
Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.
Катушки
Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:
- нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
- невозможно передать электричество на большое расстояние;
- коэффициент полезного действия (КПД) подобного способа — всего 40 %.
На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.
Лазер
Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %. Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.
Микроволновая передача
Основой для передачи электроэнергии путем микроволн, стала способность 12 см волн, частотой в 2.45 ГГц, быть незаметными для атмосферы Земли. Подобная особенность могла бы сократить до минимума потерю при передаче. Для подобного способа нужны передатчик и приемник. Люди давно создали передатчик и преобразователь электрической энергии в микроволновую. Это изобретение называется магнетрон. Он стоит в каждой микроволновой печи и является очень безопасным. Вот с изобретением приемника и преобразователя микроволн обратно в электричество возникли проблемы.
В 60-х годах прошлого века, американцы изобрели ректенну. Иными словами, приемник микроволн. С помощью изобретения удалось передать 30 кВт электрического тока на расстояние в 1.5 км. При этом коэффициент потерь составил всего 18 %. На большее установка была не способна по причине использования полупроводниковых деталей в устройстве приемника. Для приема и передачи большей мощности энергии, при использовании ректенны, пришлось бы создать огромную принимающую панель. Это бы увеличило затрачиваемую энергию, частоту и длину волн, а значит и процент сопутствующей потери. Высокое излучение могло бы убить все живое в радиусе нескольких десятков метров.
В СССР был изобретен циклотронный преобразователь микроволн в электричество. Он представлял собой 40 см трубку и был полностью собран на лампах. КПД устройства равнялось 85 %. Но для этого способа основным минусом является способ сборки на лампах. Устройства на подобных деталях могут вернуть человечество в мир огромных телефонов, компьютеров величиной с комнату. О миниатюрных электрических приборах можно забыть.
Передачу микроволн можно было организовать из космоса. Подобный проект предполагал собирать энергию солнца при помощи спутника и перенаправлять на приемник, расположенный на поверхности Земли. Но для этого придется построить спутник диаметром в километр и приемник диаметром в 5 километров. О полетах в зоне действия системы можно полностью забыть.
Главной проблемой при передаче электричества беспроводным способом, является расстояние и атмосферные преломления. Стоит также учитывать мощности. Общая потребляемая мощность всех электрических приборов в квартире, равняется 30–40 кВт. Для обеспечения электричеством одной квартиры, пришлось бы строить гигантские сооружения.
На сегодняшний день единственным способом передачи энергии большой мощности, является проводной. Он не требует прямого и обратного преобразования электрической энергии. Достаточно только подать высокое напряжение в начале и существенно занизить его в конце. Этот способ имеет ряд недостатков, но остается актуальным долгие годы.
Видео по теме
Источник