- Способы передачи электроэнергии физика
- Производство электроэнергии
- Передача электроэнергии
- Использование электроэнергии
- Производство, передача и потребление электрической энергии.
- Производство электроэнергии.
- Передача электроэнергии.
- Использование электроэнергии.
- Передача электроэнергии
- Урок 17. Физика 11 класс
- В данный момент вы не можете посмотреть или раздать видеоурок ученикам
- Получите невероятные возможности
- Конспект урока «Передача электроэнергии»
Способы передачи электроэнергии физика
«Физика — 11 класс»
Производство электроэнергии
Производится электроэнергия на электрических станциях в основном с помощью электромеханических индукционных генераторов.
Существует два основных типа электростанций: тепловые и гидроэлектрические.
Различаются эти электростанции двигателями, вращающими роторы генераторов.
На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы.
Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания.
Тепловые паротурбинные электростанции — ТЭС наиболее экономичны.
В паровом котле свыше 90% выделяемой топливом энергии передается пару.
В турбине кинетическая энергия струй пара передается ротору.
Вал турбины жестко соединен с валом генератора.
Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.
Тепловые электростанции — ТЭЦ позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд.
В результате КПД ТЭЦ достигает 60—70%.
В России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией сотни городов.
На гидроэлектростанциях — ГЭС для вращения роторов генераторов используется потенциальная энергия воды.
Роторы электрических генераторов приводятся во вращение гидравлическими турбинами.
Мощность такой станции зависит от создаваемого плотиной напора и массы воды, проходящей через турбину в каждую секунду.
Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.
Атомные электростанции — АЭС в России дают около 10% электроэнергии.
Использование электроэнергии
Главным потребителем электроэнергии является промышленность — 70% производимой электроэнергии.
Крупным потребителем является также транспорт.
Большая часть используемой электроэнергии сейчас превращается в механическую энергию, т.к. почти все механизмы в промышленности приводятся в движение электрическими двигателями.
Передача электроэнергии
Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля — Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой
где
R — сопротивление линии,
U — передаваемое напряжение,
Р — мощность источника тока.
При очень большой длине линии передача энергии может стать экономически невыгодной.
Значительно снизить сопротивление линии R практически весьма трудно, поэтому приходится уменьшать силу тока I.
Так как мощность источника тока Р равна произведению силы тока I на напряжение U, то для уменьшения передаваемой мощности нужно повысить передаваемое напряжение в линии передачи.
Для этого на крупных электростанциях устанавливают повышающие трансформаторы.
Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока.
Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Генераторы переменного тока настраивают на напряжения, не превышающие 16—20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов.
Далее для непосредственного использования электроэнергии потребителем необходимо понижать напряжение.
Это достигается с помощью понижающих трансформаторов.
Понижение напряжения (и соответственно увеличение силы тока) осуществляются поэтапно.
При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии.
Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.
Электрические станции объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители.
Такое объединение, называемое энергосистемой, дает возможность распределять нагрузки потребления энергии.
Энергосистема обеспечивает бесперебойность подачи энергии потребителям.
Сейчас в нашей стране действует Единая энергетическая система европейской части страны.
Использование электроэнергии
Потребность в электроэнергии постоянно увеличивается как в промышленности, на транспорте, в научных учреждениях, так и в быту. Удовлетворить эту потребность можно двумя основными способами.
Первый — строительство новых мощных электростанций: тепловых, гидравлических и атомных.
Однако строительство крупной электростанции требует нескольких лет и больших затрат.
Кроме того, тепловые электростанции потребляют невозобновляемые природные ресурсы: уголь, нефть и газ.
Одновременно они наносят большой ущерб равновесию на нашей планете.
Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом.
Второй — эффективное использование электроэнергии: современные люминесцентные лампы, экономия освещения.
Большие надежды возлагаются на получение энергии с помощью управляемых термоядерных реакций.
Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не повышению мощности электростанций.
Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин
Производство, передача и использование электрической энергии. Физика, учебник для 11 класса — Класс!ная физика
Источник
Производство, передача и потребление электрической энергии.
Производство электроэнергии.
Электроэнергия производится на электрических станциях зачастую при помощи электромеханических индукционных генераторов. Существует 2 основных вида электростанций — тепловые электростанции (ТЭС) и гидроэлектрические электростанции (ГЭС) — различающиеся характером двигателей, которые вращают роторы генераторов.
Источником энергии на ТЭС является топливо: мазут, горючие сланцы, нефть, угольная пыль. Роторы электрогенераторов приводятся во вращение при помощи паровых и газовых турбин либо двигателями внутреннего сгорания (ДВС).
Как известно, КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому пар, который поступает в турбину, доводят до порядка 550 °С при давлении около 25 МПа. КПД ТЭС достигает 40 %.
На тепловых электростанциях (ТЭЦ) большая часть энергии отработанного пара применяется на промышленных предприятиях и для бытовых нужд. КПД ТЭЦ может достигать 60-70 %.
На ГЭС для вращения роторов генераторов применяют потенциальную энергию воды. Роторы приводятся во вращение гидравлическими турбинами.
Мощность станции зависит от разности уровней воды, которые создаются плотиной (напора), и от массы воды, которая проходит через турбину за 1 секунду (расхода воды).
Часть электроэнергии, которая потребляется в России (примерно 10 %), производится на атомных электростанциях (АЭС).
Передача электроэнергии.
В основном, этот процесс сопровождается существенными потерями, которые связаны с нагревом проводов линий электропередачи током. Согласно закону Джоуля-Ленца энергия, которая расходуется на нагрев проводов, является пропорциональной квадрату силы тока и сопротивлению линии, так что при большой длине линии передача электроэнергии может стать экономически невыгодной. Поэтому нужно уменьшать силу тока, что при заданной передаваемой мощности приводит к необходимости увеличения напряжения. Чем длиннее линия электропередачи, тем выгоднее применять большие напряжения (на некоторых напряжение достигает 500 кВ). Генераторы переменного тока выдают напряжения, которые не могут быть больше 20 кВ (что связано со свойствами используемых изоляционных материалов).
Поэтому на электростанциях ставят повышающие трансформаторы, которые увеличивают напряжение и во столько же раз уменьшают силу тока. Для подачи потребителям электроэнергии необходимого (низкого) напряжения на концах линии электропередачи ставят трансформаторы понижающие. Понижение напряжения обычно производится поэтапно.
Использование электроэнергии.
Основные потребители электроэнергии:
- промышленность — 70%;
- транспорт (электрическая тяга);
- бытовые потребители (освещение жилищ, электроприборы).
Практически вся используемая электроэнергия переходит в механическую энергию. Практически все механизмы в промышленности приводятся в движение электродвигателями.
Примерно треть электроэнергии, которая потребляется промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и так далее).
Источник
Передача электроэнергии
Урок 17. Физика 11 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Передача электроэнергии»
Уютнейшая вещь керосиновая лампа,
но я за электричество!
М.А. Булгаков «Морфий»
В данной теме подробно рассмотрим механизм передачи электроэнергии на большие расстояния.
Для начала повторим некоторые определения и понятия, которые понадобятся при изучении нового материала.
Трансформатором называется устройство, которое служит для преобразования силы и напряжения переменного тока при неизменной частоте.
Любой трансформатор характеризуется коэффициентом трансформации — отношением числа витков в первичной обмотке трансформатора, к числу витков в его вторичной обмотке.
В зависимости от значения коэффициента трансформации, различают повышающий и понижающий трансформаторы.
Если коэффициент трансформации меньше единицы, то трансформатор называется повышающим, а если больше единицы, то понижающим.
Электроэнергия вырабатывается на различных электростанциях: ТЭС, ГЭС и АЭС. Однако, как правило, все электростанции располагаются на значительном удалении от крупным населенных пунктов и городов, в местах, близких к источникам топливо- и гидроресурсов.
Известно что, законсервировать электроэнергию в больших масштабах, в настоящее время невозможно. Поэтому она должна быть потреблена практически сразу же после получения. В связи с этим, возникает необходимость в передаче электроэнергии на большие расстояния.
Для этого между станцией и конечными потребителями строятся линии электропередач.
Однако передача электроэнергии по линии электропередач связана с заметными потерями, так как при протекании электрического тока по проводам, он вызывает их нагревание.
Согласно закона Джоуля-Ленца количество теплоты, выделяемой проводником равно произведению квадрата силы тока, сопротивления и времени прохождения тока по проводнику. Таким образом, исходя из данного закона, энергия, расходуемая на нагрев проводов линии электропередач, будет определятся по формуле:
где R — сопротивление линии электропередач, U — передаваемое напряжение, а P — мощность источника тока.
Исходя из данного закона, следует, что уменьшить потери в линии электропередач можно двумя способами: либо уменьшить сопротивление проводов, либо уменьшить силу тока в них.
Из курса физики 8 класса известно, что сопротивление зависит от геометрических свойств проводника, а также от материала, из которого он изготовлен. Отсюда видно, что сопротивление будет меньше, если уменьшить длину проводника. Однако длина определяется расстоянием, на которое передается электроэнергия. Значит, этот способ не подходит. Можно попытаться увеличить площадь поперечного сечения, но это приведет к перерасходу дорогостоящего цветного металла и возникновению трудностей, при закреплении проводов на столбах. Так что, и этот способ не выгоден. Значит, остается только второй способ — уменьшать силу тока в линии электропередач.
Но при данной мощности IU уменьшение силы тока возможно лишь при повышении передаваемого напряжения в линии электропередач. Поэтому, при передаче электроэнергии на большие расстояния необходимо пользоваться высоким напряжением и, чем длиннее линия передачи, тем более выгоднее использовать более высокое напряжение. Поэтому на крупных электростанциях устанавливают повышающие трансформаторы. Напомним, что трансформатор уменьшает силу тока во столько же раз, во сколько раз он увеличивает напряжение.
Так, электроэнергия Волжской ГЭС передается в Москву при напряжении 500 кВ, а от Саяно-Шушенской ГЭС — при напряжении 750 кВ. Однако на самих электростанциях генераторы переменного тока выстраивают на напряжения, не превышающие 16 — 20 кВ. Это, в первую очередь, связано с тем, что более высокое напряжение потребовало бы принятия сложных мер для изоляции обмоток и иных частей генераторов.
Однако, для непосредственного использования, электроэнергия таких больших напряжений не подходит. Вследствие чего, напряжение на концах линии электропередач нужно понизить. Это достигается с помощью понижающих трансформаторов.
При этом понижение напряжения и соответственно силы тока осуществляются в несколько этапов. На каждом из них напряжение становится все меньше и меньше, а территория, охватываемая электрической сетью, — все шире.
Обратите внимание на блок-схему линии передачи переменного тока. Как можно заметить, в ней присутствуют конденсаторы. Все дело в том, что трансформаторы обладают очень большим индуктивным сопротивлением, вследствие чего происходит сдвиг фаз между силой тока и напряжением. А конденсаторы помогают увеличить коэффициент мощности, тем самым свести к минимуму эту разность фаз.
В одной из прошлых тем говорилось, что долгое время в ученых кругах были разногласия по поводу использования постоянного и переменного тока. Эти разногласия были связаны в первую очередь с тем, что при передаче постоянного тока потери были бы меньше примерно в 1,5 раза. Однако до сих пор нет способов трансформации постоянного тока. Делается попытка промышленной передачи постоянного тока высокого напряжения на большие расстояния, но трансформируется все же переменный ток, который потом при высоком напряжении выпрямляется при помощи полупроводниковых приборов. После передачи постоянный ток обратно преобразуется в переменный в инверторах, который затем вновь трансформируется.
Тем не менее, трудности преобразований тока в такой линии передачи не позволяют пока широко использовать данный экономичный метод передачи электроэнергии.
Поэтому, в ближайшие годы, электроэнергия в жилые дома и для обеспечения нужд промышленности будет передаваться по линиям электропередач в виде переменного тока.
Что касается электрических станций ряда районов нашей страны, то они объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители. Такое объединение называется энергосистемой. Она позволяет сгладить пиковые нагрузки потребления электроэнергии в вечерние и утренние часы.
Помимо этого, энергосистема обеспечивает бесперебойную подачу энергии потребителям вне зависимости от их месторасположения.
– Передача электроэнергии на большие расстояния с малыми потерями – довольно таки сложная задача. Но использование повышающих и понижающих трансформаторов помогает успешно ее разрешить.
Источник