- Существует множество типов моделей и способов их классификации, например, по цели использования, области возможных приложений, способу оценки переменных и т. п
- Способы оценки модели типы
- Конспект по дисциплине Информационные технологии на тему «Классификация типов моделей»
- Понятие модели и моделирования
- 1.1. Общее определение модели
- 1.2. Классификация моделей и моделирования
- 1.2.1. Классификация моделей и моделирования по признаку «характер моделируемой стороны объекта»
- 1.2.2. Классификация моделей и моделирования по признаку «характер процессов, протекающих в объекте»
Существует множество типов моделей и способов их классификации, например, по цели использования, области возможных приложений, способу оценки переменных и т. п
Классификация моделей:
1. По цели использования модели подразделяются на
—оптимизационные,связанные с нахождением точек минимума или максимума некоторых показателей (например, управляющие часто хотят знать, какие их действия ведут к максимизации прибыли или минимизации затрат);
— описательные, описывающие поведение некоторой системы и не предназначенные для целей управления (оптимизации).
2. По способу оценки модели классифицируются на
—детерминированные, использующие оценку переменных одним числом при конкретных значениях исходных данных;
—стохастические, оценивающие переменные несколькими параметрами, так как исходные данные заданы вероятностными характеристиками.
Детерминированные модели более популярны, чем стохастические, потому что они менее дорогие, их легче строить и использовать. К тому же часто с их помощью получается вполне достаточная информация для принятия решения.
3.По области возможных приложений модели разбиваются на
—специализированные, предназначенные для использования только одной системой;
—универсальные — для использования несколькими системами.
Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большей точностью.
Источник
Способы оценки модели типы
Целью создания моделей являются описание и оптимизация некоторого объекта или процесса. Использование моделей обеспечивает проведение анализа в системах поддержки принятия решений. Модели, базируясь на математической интерпретации проблемы, при помощи определённых алгоритмов способствует нахождению информации, полезной для принятия правильных решений.
Модель линейного программирования даёт возможность определить наиболее выгодную производственную программу выпуска нескольких видов продукции при заданных ограничениях на ресурсы.
Использование моделей в составе ИС началось с применения статистических методов и методов финансового анализа, которые реализовывались командами обычных алгоритмических языков. Позже были созданы специальные языки, позволяющие моделировать ситуацию типа «что будет, если?» или «как сделать, чтобы?». Такие языки, созданные специально для построения моделей, дают возможность построения моделей определённого типа, обеспечивающих нахождение решения при гибком изменении переменных.
Существует множество типов моделей и способов их классификации, например по цели использования, области возможных приложений, способы оценки переменных и т.п.
По цели использования модели подразделяются на оптимизационные, связанные с нахождением точек минимума или максимума некоторых показателей ( например, управляющие часто хотят знать, какие их действия ведут к максимизации прибыли или минимизации затрат), и описательные, описывающие поведение некоторых систем и не предназначенные для целей управления (оптимизации).
По способу оценки модели классифицируются на детерминистские, использующие оценку переменных одним числом при конкретных значениях исходных данных, и стохастические, оценивающие переменные несколькими параметрами, т.к. исходные данные заданы вероятностными характеристиками.
Детерминистские модели более популярны, чем стохастические, т.к. они менее дорогие, их легче строить и использовать. К тому же часто с их помощью получается вполне достаточная информация для принятия решения.
По области возможных приложений модели разбиваются на специализированные, предназначенные для использования только одной системой, и универсальные — для использования несколькими системами.
Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большей точностью.
В системах поддержки принятия решений база моделей состоит из стратегических, тактических и оперативных моделей, а также математических моделей в виде совокупности модельных блоков, модулей и процедур, используемых как элементы для их построения.
Стратегические модели используются на высших уровнях управления для установления целей организации, объёмов ресурсов, необходимых для их достижения, а также политики приобретения и использования этих ресурсов. Они могут быть также полезными при выборе вариантов размещения предприятий, прогнозировании политики конкурентов и т.п. Для этих моделей характерны значительная широта охвата, множество переменных, представления данных в сжатой агрегированной форме. Часто эти данные базируются на внешних источниках и могут иметь субъективный характер. Горизонт планирования в этих моделях, как правило, измеряется в годах. Эти модели обычно детерминистские, описательные, специализированные для использования на одной определённой фирме.
Тактические модели применяются управляющими среднего уровня для распределения и контроля использования имеющихся ресурсов среди возможных сфер их использования следует указать: финансовое планирование, планирование требований к работникам, планирование увеличения продаж, построения схем компоновки предприятий. Эти модели применимы обычно лишь к отдельным частям фирмы и могут также включать в себя агрегированные показатели. Временной горизонт, охватываемый этими моделями, — от одного месяца до двух лет. Здесь также могут потребоваться данные из внешних источников, но основное внимание при реализации данных моделей д.б. уделено внутренним данным фирмы. Обычно тактические модели реализуются как детерминистские, оптимизационные и универсальные.
Оперативные модели используются на низших уровнях управления для поддержки принятия оперативных решений с горизонтом, измеряемым днями и неделями. Возможные применения этих моделей включают в себя ведение дебиторских счетов и кредитных расчётов, календарное производственное планирование, управления запасами и т.д. Оперативные модели обычно используют для расчётов внутрифирменные данные. Они, как правило, детерминистские, оптимизационные и универсальные.
Математические модели состоят из совокупности модельных блоков, модулей и процедур, реализующих математические методы. Сюда могут входить процедуры линейного программирования, статистического анализа временных рядов, регрессионного анализа и т.п. — от простейших процедур до сложных ППП. Модельные блоки, модулей и процедуры могут использоваться как поодиночке, так и комплексно для построения и поддержания моделей.
Система управления базой моделей должна обладать следующими возможностями: создавать новые модели или изменять существующие, поддерживать и обновлять параметры моделей, манипулировать моделями.
Источник
Конспект по дисциплине Информационные технологии на тему «Классификация типов моделей»
Классификация типов моделей:
a. По цели использования модели подразделяются на:
— оптимизационные, связанные с нахождением точек минимума или максимума некоторых показателей (например, управляющие часто хотят знать, какие их действия ведут к максимизации прибыли или минимизации затрат),
— описательные, описывающие поведения некоторых систем и не предназначенные для целей управления.
b. По способу оценки модели классифицируются на:
— детерминистские, использующие оценку переменных одним числом при конкретных значениях исходных данных,
— стохастические, оценивающие переменные несколькими параметрами, так как исходные данные заданы вероятностными характеристиками.
Детерминистские модели более популярны, чем стохастические, потому что они менее дорогие, их легче строить и использовать. К тому же часто с их помощью получаются вполне достаточная информация для принятия решения.
c. По области возможных приложений модели разбиваются на:
— специализированные, предназначенные для использования только одной системой,
— универсальные длят использования несколькими системами.
Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большей точностью.
d. По способу планирования классифицируются на :
— стратегические — используются на высших уровнях управления для установления целей организации, объемов ресурсов, необходимых для их достижения, а также политики приобретения и использования этих ресурсов. Они могут быть также полезны при выборе вариантов размещения предприятий, прогнозировании политики конкурентов и т. п. Для стратегических моделей характерны: значительная широта охвата, множество переменных, представление данных в сжатой агрегированной форме. Часто эти данные базируются на внешних источниках и могут иметь субъективный характер. Горизонт планирования в стратегических моделях, как правило, измеряется в годах. Эти модели обычно детерминистские, описательные, специализированные для использования на одной определенной фирме.
— тактические — применяются управляющими среднего уровня для распределения и контроля использования имеющихся ресурсов. Среди возможных сфер их использования следует указать: финансовое планирование, планирование требований к работникам, планирование увеличения продаж, построение схем компоновки предприятий. Эти модели применимы обычно лишь к отдельным частям фирмы (например, к системе производства и сбыта) и могут также включать в себя агрегированные показатели. Временной горизонт, охватываемый тактическими моделями, — от одного месяца до двух лет. Здесь также могут потребоваться данные из внешних источников, но основное внимание при реализации данных моделей должно быть уделено внутренним данным фирмы. Обычно тактические модели реализуются как детерминистские, оптимизационные и универсальные.
— оперативные — используются на низших уровнях управления для поддержки принятия оперативных решений с горизонтом, измеряемым днями и неделями. Возможные применения этих моделей включают в себя ведение дебиторских счетов и кредитных расчетов внутрифирменные данные. Они, как правило, детерминистские, оптимизационные и универсальные (т. е. могут быть использованы в различных организациях).
e. По способу представления :
— логические — рассуждения, семантические сети и т. д.
— математические — состоят из совокупности модельных блоков, модулей и процедур, реализующих математические методы , теорию фракталов, процедуры линейного программирования, статистического анализа временных рядов , регрессионного анализа и т. п. – от простейших процедур до сложных ППП. Модельные блоки, модули и процедуры могут использоваться как поодиночке, так и комплексно для построения и поддержания моделей.
Источник
Понятие модели и моделирования
Сам по себе процесс моделирования в полной мере не формализован, большая роль в этом принадлежит опыту инженера. Но, тем не менее, рассматриваемый в теме процесс создания модели в виде шести этапов может стать основой для начинающих и с накоплением опыта может быть индивидуализирован.
Математическая модель , являясь абстрактным образом моделируемого объекта или процесса, не может быть его полным аналогом. Достаточно сходства в тех элементах, которые определяют цель исследования. Для качественной оценки сходства вводится понятие адекватности модели объекту и, в связи с этим, раскрываются понятия изоморфизма и изофункционализма. Формальных приемов, позволяющих автоматически, «бездумно», создавать адекватные математические модели, нет. Окончательное суждение об адекватности модели дает практика, то есть сопоставление модели с действующим объектом. И, тем не менее, усвоение всех последующих тем пособия позволит инженеру справляться с проблемой обеспечения адекватности моделей.
Завершается тема изложением требований к моделям, которые были сформулированы Р. Шенноном на заре компьютерного моделирования тридцать лет назад в книге » Имитационное моделирование систем — искусство и наука». Актуальность этих требований сохраняется и в настоящее время.
1.1. Общее определение модели
Практика свидетельствует: самое лучшее средство для определения свойств объекта — натурный эксперимент, т. е. исследование свойств и поведения самого объекта в нужных условиях. Дело в том, что при проектировании невозможно учесть многие факторы, расчет ведется по усредненным справочным данным, используются новые, недостаточно проверенные элементы (прогресс нетерпелив!), меняются условия внешней среды и многое другое. Поэтому натурный эксперимент — необходимое звено исследования. Неточность расчетов компенсируется увеличением объема натурных экспериментов, созданием ряда опытных образцов и «доводкой» изделия до нужного состояния. Так поступали и поступают при создании, например, телевизора или радиостанции нового образца.
Однако во многих случаях натурный эксперимент невозможен.
Например, наиболее полную оценку новому виду вооружения и способам его применения может дать война. Но не будет ли это слишком поздно?
Натурный эксперимент с новой конструкцией самолета может вызвать гибель экипажа.
Натурное исследование нового лекарства опасно для жизни человека.
Натурный эксперимент с элементами космических станций также может вызвать гибель людей.
Время подготовки натурного эксперимента и проведение мероприятий по обеспечению безопасности часто значительно превосходят время самого эксперимента. Многие испытания, близкие к граничным условиям, могут протекать настолько бурно, что возможны аварии и разрушения части или всего объекта.
Из сказанного следует, что натурный эксперимент необходим, но в то же время невозможен либо нецелесообразен.
Выход из этого противоречия есть и называется он » моделирование «.
Моделирование — это замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала.
Моделирование — это, во-первых, процесс создания или отыскания в природе объекта, который в некотором смысле может заменить исследуемый объект . Этот промежуточный объект называется моделью. Модель может быть материальным объектом той же или иной природы по отношению к изучаемому объекту (оригиналу). Модель может быть мысленным объектом, воспроизводящим оригинал логическими построениями или математическими формулами и компьютерными программами.
Моделирование, во-вторых, это испытание , исследование модели. То есть, моделирование связано с экспериментом, отличающимся от натурного тем, что в процесс познания включается «промежуточное звено» — модель. Следовательно, модель является одновременно средством эксперимента и объектом эксперимента, заменяющим изучаемый объект .
Моделирование, в-третьих, это перенос полученных на модели сведений на оригинал или, иначе, приписывание свойств модели оригиналу. Чтобы такой перенос был оправдан, между моделью и оригиналом должно быть сходство, подобие.
Подобие может быть физическим, геометрическим, структурным, функциональным и т. д. Степень подобия может быть разной — от тождества во всех аспектах до сходства только в главном. Очевидно, модели не должны воспроизводить полностью все стороны изучаемых объектов. Достижение абсолютной одинаковости сводит моделирование к натурному эксперименту, о возможности или целесообразности которого было уже сказано.
Остановимся на основных целях моделирования.
Прогноз — оценка поведения системы при некотором сочетании ее управляемых и неуправляемых параметров. Прогноз — главная цель моделирования .
Объяснение и лучшее понимание объектов. Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация — это точное определение такого сочетания факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности — выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью.
Часто модель создается для применения в качестве средства обучения: модели-тренажеры, стенды, учения, деловые игры и т. п.
Моделирование как метод познания применялось человечеством — осознанно или интуитивно — всегда. На стенах древних храмов предков южно-американских индейцев обнаружены графические модели мироздания. Учение о моделировании возникло в средние века. Выдающаяся роль в этом принадлежит Леонардо да Винчи (1452-1519).
Гениальный полководец А. В. Суворов перед атакой крепости Измаил тренировал солдат на модели измаильской крепостной стены, построенной специально в тылу.
Наш знаменитый механик-самоучка И. П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен.
Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва — генерал-инженер Н. Л. Кирпичев, моделированию в авиастроении — М. В. Келдыш, С. В. Ильюшин, А. Н. Туполев и др., моделированию ядерного взрыва — И. В. Курчатов, А.Д. Сахаров, Ю. Б. Харитон и др.
Широко известны работы Н. Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения — последнего сражения эпохи парусного флота. В 1833 году адмирал П. С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены.
Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовались на моделях — плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты.
Поучительный пример недооценки моделирования — гибель английского броненосца «Кэптен» в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец «Кэптен». В него было вложено все, что нужно для «верховной власти» на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами — для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель устойчивости «Кэптена» и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.
1.2. Классификация моделей и моделирования
Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации, и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации:
- характер моделируемой стороны объекта;
- характер процессов, протекающих в объекте;
- способ реализации модели.
1.2.1. Классификация моделей и моделирования по признаку «характер моделируемой стороны объекта»
В соответствии с этим признаком модели могут быть:
- функциональными (кибернетическими);
- структурными;
- информационными.
Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как «черный ящик», имеющий входы и выходы. Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны. При функциональном моделировании эксперимент состоит в наблюдении за выходом моделируемого объекта при искусственном или естественном изменении входных воздействий. По этим данным и строится модель поведения в виде некоторой математической функции.
Компьютерная шахматная программа — функциональная модель работы человеческого мозга при игре в шахматы.
Структурное моделирование — это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта. Как мы выяснили ранее, подобие устанавливается не вообще, а относительно цели исследования. Поэтому она может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры — это топологическое описание с помощью теории графов.
Учение войск — структурная модель вида боевых действий.
1.2.2. Классификация моделей и моделирования по признаку «характер процессов, протекающих в объекте»
По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретно-непрерывными.
Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия.
Стохастические модели отображают вероятностные процессы и события.
Статические модели служат для описания состояния объекта в какой-либо момент времени.
Динамические модели отображают поведение объекта во времени.
Дискретные модели отображают поведение систем с дискретными состояниями.
Непрерывные модели представляют системы с непрерывными процессами.
Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов.
Очевидно, конкретная модель может быть стохастической, статической, дискретной или какой-либо другой, в соответствии со связями, показанными на рис. 1.1.
Источник