Способы оценки функционального состояния дыхательной системы

Научная электронная библиотека

Сетко Н. П., Сетко А. Г., Булычева Е В., Бейлина Е Б., Сетко И. М.,

2.2. Оценка функционального состояния системы органов дыхания

Полноценность функционального состояния дыхательной системы является одним из важных элементов системы адаптации организма ребенка к факторам окружающей среды, так как обеспечивает непрерывный обмен воздуха между легочными альвеолами и окружающей атмосферой и может служить маркером выявления функциональных резервов (Сетко Н.П., Вахмистрова А.В., 2009).

Комплексность изучения функции внешнего дыхания не только по жизненной ёмкости лёгких, но и по десятку других показателей, таких как объём форсированного выдоха, объем форсированного выдоха за 0,5 секунды и первую секунду, резервный объём выдоха, индекс Тиффно, пиковая объемная скорость и т.д., в настоящее время возможна благодаря появлению на рынке производства медицинской техники современных микропроцессорных портативных спирографов. Такие приборы позволяют определить механические свойства аппарата вентиляции лёгких человека, в основу работы которых положена «Унифицированная методика проведения и оценки функционального исследования механических свойств аппарата вентиляции человека», утвержденная в 1996 г. Председателем секции пульмонологии МЗ РФ Н.В. Путовым в переработанной и дополненной редакции 1999 года. Спирографы позволяют провести качественную и количественную оценку изменений функционального состояния лёгких при массовых и эпидемиологических обследованиях детей и подростков.

Современные спирографы определяют следующие показатели вентиляции легких:

1. Показатели по тесту форсированного выдоха

1.1. Объем форсированного выдоха, ФЖЕЛ (л) – разница между объемами воздуха в легких в точках начала и конца маневра ФЖЕЛ.

1.2. Объем форсированного выдоха за первую секунду, ОФВ1 (л).

1.3. Резервный объем выдоха, РОфвыд – максимальный объем, который можно дополнительно выдохнуть после спокойного выдоха.

1.4. Резервный объем вдоха, РОфвд – максимальный объем, который можно дополнительно вдохнуть после спокойного вдоха.

1.5. Объем форсированного выдоха за первые 0,5 секунды, ОФВО,5 (л).

1.6. Индекс Тиффно – ОФВ1/ЖЕЛ %.

1.7. Пиковая объемная скорость, ПОС (л/с) – максимальная скорость потока, достигаемая в процессе форсированного выдоха).

1.8. Мгновенная объемная скорость в момент выдоха 25 % ФЖЕЛ, МОС25 (л/с).

1.9. Мгновенная объемная скорость в момент выдоха 50 % ФЖЕЛ, МОС50 (л/с).

1.10. Мгновенная объемная скорость в момент выдоха 75 % ФЖЕЛ, МОС75 (л/с).

1.11. Средняя объемная скорость выдоха, определяемая в процессе выдоха от 25 до 75 % ФЖЕЛ, СОС 25–75 л/с.

1.12. Объем форсированного выдоха до достижения ПОС, ОФВ ПОС (л).

1.13. Отношение ОФВПОС к ФЖЕЛ, ОФВПОС/ФЖЕЛ.

1.14. Время достижения пиковой объемной скорости, ТПОС (с).

1.15. Время форсированного выдоха, ТФЖЕЛ (с).

2. Показатели по тесту измерения жизненной емкости легких.

2.1. Жизненная емкость легких, ЖЕЛ, (л) – разница между объемами воздуха в легких при полном вдохе и полном выдохе.

2.2. Резервный объем вдоха, Ровд – максимальный объем, который можно дополнительно вдохнуть после спокойного вдоха.

2.3. Резервный объем выдоха, РОвыд – максимальный объем, который можно дополнительно выдохнуть после спокойного выдоха.

2.4. Дыхательный объем, ДО – объем, который выдыхается и вдыхается при спокойном дыхании.

2.5. Емкость вдоха, Евд – сумма ДО и Ровд.

3. Показатели по тесту минутного объема дыхания.

3.1. Дыхательный объем – средний объем воздуха, проходящий через легкие за один цикл вдоха-выдоха, при выполнении теста измерения минутного объема дыхания МОД.

3.2. Средняя частота дыхания в тесте МОД, ЧД.

3.3. Минутный объем дыхания, МОД – определяется как ДО?ЧД.

4. Показатели по тесту максимальной вентиляции легких.

Читайте также:  Способ подстановки 7 класс конспект урока никольский

4.1. Дыхательный объем, ДО мвл (л) – максимальный объем воздуха, проходящий через легкие за один цикл вдоха-выдоха при проведении теста максимальной вентиляции легких.

4.2. Максимальная частота дыхания в тесте МВЛ, ЧД мвл.

4.3. Максимальная вентиляция легких, МВЛ – определяется как ДО МВЛ?ЧД мвл.

Кроме того современные спирографы обеспечивают построение графиков процедур вдоха-выдоха: «поток-объём», «поток-время», «объём-время», а также приведение измеренных и вычисленных объёмных и скоростных показателей к стандартным газовым условиям (BTPS).

Встроенные микропроцессоры в спирографы позволяют выводить результаты обследования на лазерный принтер через интерфейсы USB или в нового поколения спирографов уже встроен принтер, печатающий результаты на термопленке.

Портативность, автоматический расчет показателей делает современные спирографы удобными и эффективными измерительными средствами в условиях массовых скриннинговых исследованиях, а возможность измерения и вычисления порядка 30 показателей механических свойств аппарата вентиляции лёгких человека и автоматическое формирование общего заключения интерпретации полученных результатов определяет его научную и практическую ценность в плане всестороннего изучения функционального состояния дыхательной системы в рамках эффективной донозологической диагностики здоровья детского и подросткового населения.

Источник

2.3.4. Методика оценки функционального состояния дыхательной системы

Для самоконтроля за функциональным состоянием дыхательной системы рекомендуются следующие пробы.

Проба Штанге (задержка дыхания на вдохе). После 5 минут отдыха сидя сделать вдох на 80–90 % от максимального и задержать дыхание. Время отмечается от момента задержки дыхания до ее прекращения. Средним показателем является способность задерживать дыхание на вдохе для нетренированных людей на 40–50 с, для тренированных — на 60–90 с и более. С нарастанием тренированности время задержки дыхания возрастает, при снижении или отсутствии тренированности — снижается. При заболевании или переутомлении это время снижается на значительную величину — до 30–35 с.

Проба Генчи (задержка дыхания на выдохе) выполняется так же, как и проба Штанге, только задержка дыхания производится после полного выдоха. Средним показателем является способность задерживать дыхание на выдохе для нетренированных людей на 25–30 с, для тренированных — 40–60 с и более.

При инфекционных заболеваниях органов кровообращения, дыхания и других, а также после перенапряжения и переутом­ления, в результате которых ухудшается общее функциональное состояние организма, продолжительность задержки дыхания уменьшается как на вдохе, так и на выдохе.

Частота дыхания – количество дыханий за 1 мин. Ее можно определить по движению грудной клетки. Средняя частота дыхания у здоровых лиц составляет 16–18 раз/мин, у спортсменов — 8–12 раз/мин. В условиях максимальной нагрузки частота дыхания возрастает до 40–60 раз/мин.

2.3.5. Организация и содержание методико-практического занятия

Цель: ознакомиться с методикой оценки функционального состояния сердечно-сосудистой и дыхательной систем.

Оборудование: секундомеры, метроном, тумба (высота от 30 до 50 см), таблицы, протокол занятия.

1. Преподаватель кратко сообщает цель, задачи, структуру занятия.

2. Одновременное выполнение студентами функциональных проб для оценки дыхательной системы:

а) проба задержки дыхания на вдохе. Во время отдыха после пробы результат занести в протокол;

б) одновременный подсчет частоты дыхания в течение одной минуты. Результат занести в протокол;

в) проба задержки дыхания на выдохе. Между пробами задержки дыхания на вдохе и выдохе должно быть время для отдыха. Поэтому после первой пробы рекомендуется сначала подсчитать частоту дыхания, занести результат в протокол (т. е. дать время для восстановления дыхания) и только потом выполнить пробу на выдохе; результат занести в протокол.

3. Одновременное выполнение студентами действий для оценки функционального состояния сердечно-сосудистой системы:

а) подсчет пульса в состоянии покоя. Для техники подсчета пульса рекомендуем пользоваться методикой и рисунками методико-практического занятия «Простейшие методики самооценки работоспособности, усталости, утомления и применения средств физической культуры для их направленной коррекции»;

Читайте также:  Способы окрашивания яиц каркаде

б) измерение артериального давления. Работу можно выполнять в парах, тройках под руководством и инструкцией последовательности действий преподавателя, результаты занести в протокол;

в) выполнение степ-пробы по Крэшу подготовленным студентом (кой). Студенты ведут наблюдение за техникой выполнения, участвуют в математических расчетах результатов тестирования. Полученные данные записывают в свой протокол.

4. Сопоставление всех полученных величин исследования функционального состояния дыхательной и сердечно-сосудистой систем с рекомендуемыми стандартами (табл. 2.3.1, 2.3.2).

5. Обсуждение результатов методико-практического занятия.

Источник

26. Основные методы оценки функционального состояния органов дыхания (спирография, пневмотахометрия, пневмотахография, определение Ра о2 и РаСо2 в артериальной крови).

Методы функциональной диагностики

Спирография. Наиболее достоверные данные получают при спирографии (рис. 25). Кроме изме­рения легочных объемов, с помощью спирографа можно определить ряд дополнительных показа­телей вентиляции: дыхательный и минутный объемы вентиляции, максимальную вентиляцию лег­ких, объем форсированного выдоха. Пользуясь спирографом, можно также определить все показа­тели для каждого легкого (с помощью бронхоскопа, подводя воздух раздельно из правого и левого главных бронхов — «раздельная бронхоспирография»). Наличие абсорбера для оксида углерода (IV) позволяет установить поглощение кислорода легкими обследуемого за минуту.

При спирографии также определяют ОО. Для этой цели применяют спирограф с закрытой си­стемой, имеющей поглотитель для СО2. Его заполняют чистым кислородом; обследуемый дышит в него в течение 10 мин, затем определяют остаточный объем с помощью расчета концентрации и количества азота, попавшего в спирограф из легких обследуемого.

ВФМП определить сложно. Судить о его количестве можно из расчетов соотношения парциаль­ного давления СО2 в выдыхаемом воздухе и артериальной крови. Он увеличивается при наличии больших каверн и вентилируемых, но недостаточно снабжаемых кровью участков легких.

Исследование интенсивности легочной вентиляции

Минутный объем дыхания (МОД) определяют умножением дыхательного объема на частоту дыхания; в среднем он равен 5000 мл. Более точно его можно определить с помощью мешка Дугласа и по спирограммам.

Максимальная вентиляция легких <МВЛ,«предел дыхания») — количество воздуха, которое мо­жет провентилироваться легкими при максимальном напряжении дыхательной системы. Опреде­ляют спирометрией при максимально глубоком дыхании с частотой около 50 в минуту, в норме равно 80—200 л/мин. По А. Г. Дембо, должная МВЛ = ЖЕЛ • 35.

Резерв дыхания (РД) определяют по формуле РД = МВЛ — МОД. В норме РД превышает МОД не менее чем в 15—20 раз. У здоровых лиц РД равен 85% МВЛ, при дыхательной недостаточности он уменьшается до 60—55% и ниже. Эта величина в значительной степени отражает функциональ­ные возможности дыхательной системы здорового человека при значительной нагрузке или боль­ного с патологией системы дыхания для компенсации значительной дыхательной недостаточности путем увеличения минутного объема дыхания.

Все эти пробы позволяют изучать состояние легочной вентиляции и ее резервы, необходимость в которых может возникнуть при выполнении тяжелой физической работы или при заболевании органов дыхания.

Исследование механики дыхательного акта. Позволяет определить изменение соотношения вдоха и выдоха, дыхательного усилия в разные фазы дыхания и прочие показатели.

Экспираторную форсированную жизненную емкость легких (ЭФЖЕЛ) исследуют по Вотчалу —Тиффно. Измерение проводят так же, как при определении ЖЕЛ, но при максимально быстром, форсированном выдохе. ЭФЖЕЛ у здоровых лиц оказывается на 8—11% (100—300 мл) меньше, чем ЖЕЛ, в основном за счет увеличения сопротивления току воздуха в мелких бронхах. В случае повышения этого сопротивления (при бронхите, бронхоспазме, эмфиземе и др.) разница между ЭФЖЕЛ и ЖЕЛ возрастает до 1500 мл и более. Определяют также объем форсированного выдоха за 1с (ФЖЕЛ), который у здоровых лиц равен в среднем 82,7% ЖЕЛ, и длительность форсирован­ного выдоха до момента его резкого замедления; это исследование проводят только с помощью спирографии. Применение бронхолитических средств (например, теофедрина) во время определе­ния ЭФЖЕЛ и различных вариантов этой пробы позволяет оценить значение бронхоспазма в воз­никновении дыхательной недостаточности и снижении указанных показателей: если после приема теофедрина полученные данные проб остаются значительно ниже нормальных, то бронхоспазм не является причиной их снижения.

Читайте также:  Способ максимального сгибания при кровотечении

Инспираторную форсированную жизненную емкость легких (ИФЖЕЛ) определяют при макси­мально быстром форсированном вдохе. ИФЖЕЛ не изменяется при не осложненной бронхитом эмфиземе, но уменьшается при нарушении проходимости дыхательных путей.

Пневмотахометрия — метод измерения «пиковых» скоростей воздушного потока при форси­рованном вдохе и выдохе; позволяет оценить состояние бронхиальной проходимости.

Пневмотахография — метод измерения объемной скорости и давлений, возникающих в раз­личные фазы дыхания (спокойного и форсированного). Проводится с помощью универсальногопневмотахографа. Принцип метода основан на регистрации в различных точках движения струи воздуха давлений, меняющихся в связи с дыхательным циклом. Пневмотахография позволяет определить объемную скорость воздушного потока во время вдоха и выдоха (в норме при спокой­ном дыхании она равна 300—500 мл/с, при форсированном — 5000—8000 мл/с), продолжитель­ность фаз дыхательного цикла, МОД, внутриальвеолярное давление, сопротивление дыхательных путей движению струи воздуха, растяжимость легких и грудной стенки, работу дыхания и некото­рые другие показатели.

Пробы на выявление явной или скрытой дыхательной недостаточности. Определение по­требления кислорода и кислородного дефицита осуществляют методом спирографии с закрытой системой и поглощением СО2. При исследовании кислородного дефицита полученную спирограм- му сравнивают со спирограммой, зарегистрированной в тех же условиях, но при заполнении спи­рометра кислородом; производят соответствующие расчеты.

Эргоспирография — метод, позволяющий определить количество работы, которое может совер­шить обследуемый без появления признаков дыхательной недостаточности, т. е. изучить резервы системы дыхания. Методом спирографии определяют потребление кислорода и кислородный де­фицит у больного в спокойном состоянии и при выполнении им определенной физической нагруз­ки на эргометре. О дыхательной недостаточности судят по наличию спирографического кислород­ного дефицита более чем 100 л/мин или скрытого кислородного дефицита более чем 20% (дыха­ние становится более спокойным при переключении дыхания воздухом на дыхание кислородом), а также по изменению парциального давления кислорода и оксида углевода (IV) крови.

Исследование газов крови осуществляют следующим образом. Кровь получают из ранки от уко­ла кожи нагретого пальца руки (доказано, что полученная в таких условиях капиллярная кровь по своему газовому составу аналогична артериальной), собирая ее сразу в мензурку под слой нагрето­го вазелинового масла во избежание окисления кислородом воздуха. Затем исследуют газовый со­став крови на аппарате Ван-Слайка, где используется принцип вытеснения газов из связи с гемо­глобином химическим путем в вакуумное пространство. Определяют следующие показатели: а) содержание кислорода в объемных единицах; б) кислородную емкость крови (т. е. количество кис­лорода, которое может связать единица данной крови); в) процент насыщения кислородом крови (в норме 95); г) парциальное давление кислорода крови (в норме 90— 100 мм рт. ст.); д) содержа­ние оксида углерода (IV) в объемных процентах в артериальной крови (в норме около 48); е) пар­циальное давление оксида углерода (IV) (в норме около 40 мм рт. ст.).

В последнее время парциальное напряжение газов в артериальной крови (РаО2 и РаСО2) определя­ют, пользуясь аппаратом «микро-Аструп» или другими методиками.

определяют показания шкалы прибора при дыхании воздухом, а затем чистым кислородом; значи­тельное увеличение разницы показаний во втором случае свидетельствует о кислородной задол­женности крови.

Определение скорости кровотока раздельно в малом и большом круге кровообращения. У

Определить кислородную насыщенность крови можно также методом оксигемометрии, прин­цип которой заключается в том, что датчик (фотоэлемент) накладывают на мочку уха больного и

больных с нарушением функции внешнего дыхания это также позволяет получить ценные данные для диагностики и прогноза

Источник

Оцените статью
Разные способы