- Раздел 1. Теория статистики
- Оглавление
- 4.1. Особенности выборочного наблюдения. Генеральная и выборочная совокупности
- 4.2. Виды и способы отбора. Виды выборочного наблюдения
- 4.3. Определение ошибки выборочного наблюдения. Средняя и предельная ошибки выборочного наблюдения
- Схемы отбора в выборку
- Основные принципы отбора в выборку
- Схемы отбора для вероятностных выборок
- Способы отбора и виды выборки
Раздел 1. Теория статистики
Цель: сформировать представление о способах решения задач, которые возникают при использовании выборочного наблюдения.
Задачи: познакомить студентов с методикой различных видов статистического наблюдения, оценки надежности выборочных показателей с учетом их случайной ошибки
Оглавление
4.1. Особенности выборочного наблюдения. Генеральная и выборочная совокупности
Выборочное наблюдение – это вид несплошного наблюдения, которое обеспечивает отбор в случайном порядке части единиц совокупности и возможность последующего распространения полученных данных на всю совокупность единиц.
Исходный массив данных называется генеральной совокупностью. Часть единиц генеральной совокупности, которая непосредственно обследуется при выборочном наблюдении, представляет собой выборочную совокупность. Числовые характеристики генеральной совокупности (средняя, дисперсия и др.) называются параметрами генеральной совокупности.
Организационными вопросами выборочного наблюдения являются: обоснование границ генеральной совокупности; единица отбора; единица наблюдения; способы отбора.
4.2. Виды и способы отбора. Виды выборочного наблюдения
По способу организации различают следующие основные виды выборочного наблюдения: собственно-случайная (простая) выборка; типическая (расслоенная, стратифицированная, районированная); серийная (гнездовая); многоступенчатая; многофазная.
При любом виде выборки отбор единиц производится тремя способами: случайный отбор (жеребьевка, таблица случайных чисел); отбор единиц по какой-либо схеме (единицы упорядочивают таким образом, чтобы это было не связано с изучаемыми свойствами; далее проводится механический отбор единиц); сочетание первого и второго способов.
Простая собственно-случайная выборка проводится из всей массы единиц совокупности без предварительного разделения ее на какие-либо группы. Применяется индивидуальный отбор единиц, т. е. единица отбора совпадает с единицей наблюдения. Типическая, (районированная, стратифицированная) выборка используется в случае, когда генеральная совокупность неоднородна и это влияет на размер изучаемого признака. Серийная выборка (кластерный или гнездовой отбор) – это способ формирования выборки, при котором единица отбора состоит из группы или гнезда более мелких единиц, называемых элементами. Многоступенчатая выборка применяется, когда имеют место несколько стадий отбора (ступеней отбора). При этом каждая стадия имеет свою единицу отбора. Число ступеней отбора определяется числом типов единиц отбора и на последней ступени единица отбора совпадает с единицей выборочной совокупности. Многофазная выборка характеризуется тем, что она также включает несколько ступеней отбора, но на всех ступенях сохраняется одна и та же единица отбора (в отличие от многоступенчатой).
Особым видом выборочного наблюдения является моментное наблюдение – это выборочное во времени наблюдение. Объектом выборки являются отрезки времени. Поэтому понятие генеральной и выборочной совокупности относится не к совокупности единиц, а ко времени наблюдения.
4.3. Определение ошибки выборочного наблюдения. Средняя и предельная ошибки выборочного наблюдения
Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называется ошибкой репрезентативности. Различают систематические и случайные ошибки выборки. Случайные ошибки выборки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности. Систематические ошибки могут быть связаны с нарушением правил отбора или условий реализации выборки.
Величина случайной ошибки репрезентативности зависит от ряда факторов: объема выборки; степени вариации изучаемого признака в генеральной совокупности; принятого способа формирования выборочной совокупности.
Различают среднюю (стандартную) и предельную ошибку выборки. Средняя ошибка выборки характеризует меру отклонений выборочных показателей от аналогичных показателей генеральной совокупности. Предельной ошибкой выборки принято считать максимально возможное расхождение выборочной и генеральной характеристик, т. е. максимум ошибки при заданной вероятности ее появления. Соотношение между пределом ошибки выборки , гарантируемым с некоторой вероятностью Р(t), и средней ошибкой выборки имеет вид:
или
, где t – коэффициент доверия, определяемый в зависимости от уровня вероятности Р(t). Наряду с абсолютной величиной предельной ошибки выборки рассчитывается и относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характе
ристике выборочной совокупности. На практике величина дисперсии признака в генеральной совокупности, как правило, неизвестна, поэтому в формулы ошибки выборки подставляют дисперсию выборочной совокупности.
Выборочная дисперсия несколько меньше генеральной, в математической статистике доказано, что
Если выборочная совокупность большого объема (то есть n достаточно велико), то соотношение приближается к единице и выборочная дисперсия практически совпадает с генеральной.
Выборку считают безусловно большой, если n>100.
Источник
Схемы отбора в выборку
Схема отбора в выборку — это детальное описание того, какие данные и каким способом будут получены. Есть много схем для отбора в выборку, поэтому нужно выбрать для исследований такую, которая даст наиболее репрезентативные результаты. Репрезентативность выборки — это соответствие характеристик выборки характеристикам популяции.
В идеале лучше работать со всей генеральной совокупностью, но это занимает много времени и ресурсов. Поэтому можно исследовать только ее часть, что и называется выборкой. Затем исследуются элементы, которые попали в выборку. На основе полученных значений оцениваются неизвестные элементы выборки.
Основные принципы отбора в выборку
Идея состоит в том, чтобы перенести результаты на всю генеральную совокупность. Поэтому выборка должна быть репрезентативной. Другими словами она пропорциональна как подгруппам, так и всей совокупности, и не исключает каких-либо отдельных групп.
Выборка должна быть настолько большой, насколько это возможно, чтобы избежать ошибочных суждений. По сути выборкой может быть любое подмножество генеральной совокупности.
Если выборка недостаточно репрезентативна — исследование будет считаться предвзятым. Если она будет недостаточно большой — неточным.
Если правильно подобрать связь между выборкой и совокупностью, тогда можно сделать правильные заключения о природе всей совокупности. Лучше быть возможно правым, чем точно не правым.
Схемы отбора для вероятностных выборок
Вероятностные выборки подразумевают, что исследователь абсолютно уверен в связях выборки с генеральной совокупностью. Если же связи не прослеживаются или в наличии имеются не все элементы генеральной совокупности используется невероятностная выборка.
На основе жеребьевки
Схема отбора состоит в том, чтобы провести ряд испытаний без возвращения элемента в генеральную совокупность. Каждый элемент совокупности имеет одинаковые шансы попасть в выборку.
Из генеральной совокупности N случайным образом отбирается один элемент, вероятность попадания элемента в выборку равна 1/N. Затем из выборки N-1 выбирается второй элемент с вероятностью 1/(N-1) и так далее до n-го элемента с вероятностью 1/(N-n).
Источник
Способы отбора и виды выборки
В теории выборочного метода разработаны различные способы отбора и виды выборки, обеспечивающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной совокупности. Различают два способа отбора: повторный и бесповторный. При повторномотборе каждая отобранная в случайном порядке единица после ее обследования возвращается в генеральную совокупность и при последующем отборе может снова попасть в выборку. Этот способ отбора построен по схеме «возвращенного шара»: вероятность попасть в выборку для каждой единицы генеральной совокупности не меняется независимо от числа отбираемых единиц. При бесповторномотборе каждая единица, отобранная в случайном порядке, после ее обследования в генеральную совокупность не возвращается. Этот способ отбора построен по схеме «невозвращенного шара»: вероятность попасть в выборку для каждой единицы генеральной совокупности увеличивается по мере производства отбора.
В зависимости от методики формирования выборочной совокупности различают следующие основные виды выборки:
типическую (стратифицированную, районированную);
Собственно случайная выборкаформируется в строгом соответствии с научными принципами и правилами случайного отбора. Для получения собственно случайной выборки генеральная совокупность строго подразделяется на единицы отбора, и затем в случайном повторном или бесповторном порядке отбирается достаточное число единиц.
Случайный порядок подобен жеребьевке. На практике он чаще всего применяется при использовании специальных таблиц случайных чисел. Если, например, из совокупности, содержащей 1587 единиц, следует отобрать 40 единиц, то из таблицы отбирают 40 четырехзначных чисел, которые меньше 1587.
В том случае, когда собственно случайная выборка организуется как повторная, расчет стандартной ошибки производится в соответствии с формулой (6.1). При бесповторном способе отбора формула для расчета стандартной ошибки будет:
где 1 – n/ N – доля единиц генеральной совокупности, не попавших в выборку. Так как эта доля всегда меньше единицы, то ошибка при бесповторном отборе при прочих равных условиях всегда меньше, чем при повторном. Бесповторный отбор организовать легче, чем повторный, и он применяется намного чаще. Однако величину стандартной ошибки при бесповторном отборе можно определять по более простой формуле (5.1). Такая замена возможна, если доля единиц генеральной совокупности, не попавших в выборку, большая и, следовательно, величина близка к единице.
Формировать выборку в строгом соответствии с правилами случайного отбора практически очень сложно, а иногда невозможно, так как при использовании таблиц случайных чисел необходимо пронумеровать все единицы генеральной совокупности. Довольно часто генеральная совокупность такая большая, что провести подобную предварительную работу чрезвычайно сложно и нецелесообразно, поэтому на практике применяют другие виды выборок, каждая из которых не является строго случайной. Однако организуются они так, чтобы было обеспечено максимальное приближение к условиям случайного отбора.
При чисто механической выборкевся генеральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, составленного в каком-то нейтральном по отношению к изучаемому признаку порядке, например по алфавиту. Затем список единиц отбора разбивается на столько равных частей, сколько необходимо отобрать единиц. Далее по заранее установленному правилу, не связанному с вариацией исследуемого признака, из каждой части списка отбирается одна единица. Этот вид выборки не всегда может обеспечить случайный характер отбора, и полученная выборка может оказаться смещенной. Объясняется это тем, что, во-первых, упорядочение единиц генеральной совокупности может иметь элемент неслучайного характера. Во-вторых, отбор из каждой части генеральной совокупности при неправильном установлении начала отсчета может также привести к ошибке смещения. Однако практически легче организовать механическую выборку, чем собственно случайную, и при проведении выборочных обследований чаще всего пользуются этим видом выборки. Стандартную ошибку при механической выборке определяют по формуле собственно случайной бесповторной выборки (6.2).
Типическая (районированная, стратифицированная) выборкапреследует две цели:
•обеспечить представительство в выборке соответствующих типических групп генеральной совокупности по интересующим исследователя признакам;
•увеличить точность результатов выборочного обследования.
При типической выборке до начала ее формирования генеральная совокупность единиц разбивается на типические группы. При этом очень важным моментом является правильный выбор группировочного признака. Выделенные типические группы могут содержать одинаковое или различное число единиц отбора. В первом случае выборочная совокупность формируется с одинаковой долей отбора из каждой группы, во втором – с долей, пропорциональной ее доле в генеральной совокупности. Если выборка формируется с равной долей отбора, по существу она равносильна ряду собственно случайных выборок из меньших генеральных совокупностей, каждая из которых и есть типическая группа. Отбор из каждой группы осуществляется в случайном (повторном или бесповторном) либо механическом порядке. При типической выборке, как с равной, так и неравной долей отбора, удается устранить влияние межгрупповой вариации изучаемого признака на точность ее результатов, так как обеспечивается обязательное представительство в выборочной совокупности каждой из типических групп. Стандартная ошибка выборки будет зависеть не от величины общей дисперсии ,а от величины средней из групповых дисперсий. Поскольку средняя из групповых дисперсий всегда меньше общей дисперсии, постольку при прочих равных условиях стандартная ошибка типической выборки будет меньше стандартной ошибки собственно случайной выборки.
При определении стандартных ошибок типической выборки применяются следующие формулы:
•при повторном способе отбора
•при бесповторном способе отбора:
– средняя из групповых дисперсий в выборочной совокупности.
Серийная (гнездовая) выборка – это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подлежащие обследованию, а группы единиц (серии, гнезда). Внутри отобранных серий (гнезд) обследованию подвергаются все единицы. Серийную выборку практически организовать и провести легче, чем отбор отдельных единиц. Однако при этом виде выборки, во-первых, не обеспечивается представительство каждой из серий и, во-вторых, не устраняется влияние межсерийной вариации изучаемого признака на результаты обследования. В том случае, когда эта вариация значительна, она приведет к увеличению случайной ошибки репрезентативности. При выборе вида выборки исследователю необходимо учитывать это обстоятельство. Стандартная ошибка серийной выборки определяется по формулам:
•при повторном способе отбора –
где межсерийная дисперсия выборочной совокупности; r – число отобранных серий;
•при бесповторном способе отбора –
Где R – число серий в генеральной совокупности.
В практике те или иные способы и виды выборок применяются в зависимости от цели и задач выборочных обследований, а также возможностей их организации и проведения. Чаще всего применяется комбинирование способов отбора и видов выборки. Такие выборки получили название комбинированные.Комбинирование возможно в разных сочетаниях: механической и серийной выборки, типической и механической, серийной и собственно случайной и т.д. К комбинированной выборке прибегают для обеспечения наибольшей репрезентативности с наименьшими трудовыми и денежными затратами на организацию и проведение обследования.
При комбинированной выборке величина стандартной ошибки выборки состоит из ошибок на каждой ее ступени и может быть определена как корень квадратный из суммы квадратов ошибок соответствующих выборок. Так, если при комбинированной выборке в сочетании использовались механическая и типическая выборки, то стандартную ошибку можно определить по формуле
где – стандартные ошибки соответственно механической и типической выборок.
Особенность многоступенчатой выборки состоит в том, что выборочная совокупность формируется постепенно, по ступеням отбора. На первой ступени с помощью заранее определенного способа и вида отбора отбираются единицы первой ступени. На второй ступени из каждой единицы первой ступени, попавшей в выборку, отбираются единицы второй ступени и т.д. Число ступеней может быть и больше двух. На последней ступени формируется выборочная совокупность, единицы которой подлежат обследованию. Так, например, для выборочного обследования бюджетов домашних хозяйств на первой ступени отбираются территориальные субъекты страны, на второй – районы в отобранных регионах, на третьей – в каждом муниципальном образовании отбираются предприятия или организации и, наконец, на четвертой ступени – в отобранных предприятиях отбираются семьи.
Таким образом, выборочная совокупность формируется на последней ступени. Многоступенчатая выборка более гибкая, чем другие виды, хотя в общем она дает менее точные результаты, чем выборка того же объема, но сформированная в одну ступень. Однако при этом она имеет одно важное преимущество, которое заключается в том, что основу выборки при многоступенчатом отборе нужно строить на каждой из ступеней только для тех единиц, которые попали в выборку, а это очень важно, так как нередко готовой основы выборки нет.
Стандартную ошибку выборки при многоступенчатом отборе при группах разных объемов определяют по формуле
где – стандартные ошибки на разных ступенях;
n1, n2,n3, ... – численность выборок на соответствующих ступенях отбора.
В том случае, если группы неодинаковы по объему, то теоретически этой формулой пользоваться нельзя. Но если общая доля отбора на всех ступенях постоянна, то практически расчет по этой формуле не приведет к искажению величины ошибки.
Сущность многофазной выборки состоит в том, что на основе первоначально сформированной выборочной совокупности образуют подвыборку, из этой подвыборки – следующую подвыборку и т.д. Первоначальная выборочная совокупность представляет собой первую фазу, подвыборка из нее – вторую и т.д. Многофазную выборку целесообразно применять в случаях, если: для изучения различных признаков требуется неодинаковый объем выборки; колеблемость изучаемых признаков неодинакова и требуемая точность различна;
в отношении всех единиц первоначальной выборочной совокупности (первая фаза) необходимо собрать менее подробные сведения, а в отношении единиц каждой последующей фазы – более подробные.
Одним из несомненных достоинств многофазной выборки является то обстоятельство, что сведениями, полученными на первой фазе, можно пользоваться как дополнительной информацией на последующих фазах, информацией второй фазы – как дополнительной информацией на следующих фазах и т.д. Такое использование сведений повышает точность результатов выборочного обследования.
При организации многофазной выборки можно применять сочетание различных способов и видов отбора (типическую выборку с механической и т.д.). Многофазный отбор можно сочетать с многоступенчатым. На каждой ступени выборка может быть многофазной.
Стандартная ошибка при многофазной выборке рассчитывается на каждой фазе в отдельности в соответствии с формулами того способа отбора и вида выборки, при помощи которых формировалась ее выборочная совокупность.
Взаимопроникающие выборки – это две или более независимые выборки из одной и той же генеральной совокупности, образованные одним и тем же способом и видом. К взаимопроникающим выборкам целесообразно прибегать, если необходимо за короткий срок получить предварительные итоги выборочных обследований. Взаимопроникающие выборки эффективны для оценки результатов обследования. Если в независимых выборках результаты одинаковы, то это свидетельствует о надежности данных выборочного обследования. Взаимопроникающие выборки иногда можно применять для проверки работы различных исследователей, поручив каждому из них провести обследование разных выборок.
Стандартная ошибка при взаимопроникающих выборках определяется по той же формуле, что и типическая пропорциональная выборка (5.3). Взаимопроникающие выборки по сравнению с другими видами требуют больших трудовых затрат и денежных расходов, поэтому исследователь должен учитывать это обстоятельство при проектировании выборочного обследования.
Тема 6. Ряды динамики.
1. Понятие о рядах динамики;
2. Виды рядов динамики;
3. Основные аналитические показатели рядов динамики.
Все явления природы и общества непрерывно развиваются и изменяются. Поэтому статистика не могла бы характеризовать явления общественной жизни, если бы она не изучала их состояние развития. Процесс развития общественных явлений во времени – динамика. Показатели, которые характеризуют изменение явлений из периода в период, образуют РЯДЫ ДИНАМИКИ.
Ряды динамики – ряд чисел, которые характеризуют изменение изучаемого явления во времени.
Ряды имеют важное экономическое значение для анализа изучаемых явлений.
Показатели рядов динамики позволяют определить, как именно развиваются явления, т.е. растут или уменьшаются их размеры, по сравнению с предшествующими периодами, а так же быстро или медленно происходит этот рост. Ряды динамики могут характеризовать уровни развития общественных явлений на определенный момент времени или процессы их развития за определенный период времени.
В зависимости от этого ряды динамики могут быть: моментными и периодическими (интервальными)
Моментный ряд – ряд динамики, уровень которого характеризует размеры общественно-экономических явлений на определенный момент времени или на определенную дату. В моментном ряду динамики каждый последующий уровень частично или полностью включает предыдущий уровень, и поэтому в моментном ряду динамики нельзя суммировать уровни, а можно из последующего вычитать предыдущий. Разность показателей показывает рост или уменьшение явления.
Периодический ряд – ряд динамики, уровень которого характеризует размеры общественно-экономических явлений за определенный период времени. В периодическом ряду динамики можно суммировать показатели и можно делить их на части. При анализе изменения явлений различают следующие аналитические показатели рядов динамики:
1.Абсолютный прирост – разность между последующим и предыдущим уровнем ряда.: — цепной, — базисный
2.Темп роста – отношение последующего уровня к предыдущему.
3.Темп прироста – отношение абсолютного прироста к предыдущему уровню ряда.
4.Абсолютное значение 1% — отношение абсолютного прироста к темпу прироста.
Средний уровень ряда в периодическом ряду динамики определяется по формуле средней арифметической простой. В моментном ряду динамики средний уровень ряда определяется двумя способами:
1. Если промежутки времени между датами одинаковы, то средний уровень ряда определяется по формуле средней хронологической.
2. Если в моментном ряду динамики интервалы между датами неодинаковы, то следует учитывать продолжительность периода. При этом уровень среднего ряда определяется по формуле средней арифметической взвешенной.
В статистической практике наиболее распространенными способами обработки динамических рядов являются:
1. Укрупнение интервалов.
2. Сглаживание способов скользящей средней.
3. Аналитическое выравнивание (метод наименьших квадратов).
Самым простым приемом является укрупнение интервалов времени, к которому относятся уровни динамического ряда (сточные в декаде или в месяце, а месячные – в квартале или году, а квартальные можно объединить в годовые) и исчисления по ним средних уровней. Другим приемом выявления общей тенденции является сглаживание с помощью скользящей средней. Этот метод состоит в том, что каждый уровень из уровней ряда динамики заменяет средний данного уровня и соседних с ним. Полученными скользящими средними заменяют уровень, стоящий в середине периода скольжения к первой средней.
Источник